提高导电聚合物薄膜电容的逐层方法

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Małgorzata Skorupa, Ethan Cao, Adrian Barylski, Sara Shakibania, Sandra Pluczyk-Małek, Zuzanna Siwy, Katarzyna Krukiewicz
{"title":"提高导电聚合物薄膜电容的逐层方法","authors":"Małgorzata Skorupa, Ethan Cao, Adrian Barylski, Sara Shakibania, Sandra Pluczyk-Małek, Zuzanna Siwy, Katarzyna Krukiewicz","doi":"10.1002/aelm.202400761","DOIUrl":null,"url":null,"abstract":"In the pursuit of energy storage devices offering high power density, rapid charge and discharge rates, a layer-by-layer deposition approach is shown to improve the capacitive properties of conducting polymer-based devices. This work describes the synthesis and characterization of a composite material based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-ethylenedioxypyrrole) (PEDOP) for supercapacitor applications. PEDOT and PEDOP are sequentially electropolymerized using cyclic voltammetry to form bilayer structures, overcoming challenges associated with copolymerization. The evaluation of electrochemical performance of the PEDOT/PEDOP composite reveals superior areal capacitance (42.2 ± 2.8 mF cm<sup>−2</sup> at the scan rate of 5 mV s<sup>−1</sup>) outperforming both homopolymers by up to 30%. Microscopic and spectroscopic surface analysis confirm the uniform coating of PEDOT/PEDOP and enhanced surface roughness resulting from the formation of 3D nanostructures, contributing to improved electrochemical performance. Further electrochemical impedance spectroscopic analysis demonstrates low charge transfer resistance (25 ± 8 Ω) and high energy density with respect to the area of the electrode (3.53 ± 0.3 µWh cm<sup>−2</sup> at 55 µW cm<sup>−2</sup>), making PEDOT/PEDOP composite a promising material for high-performance supercapacitors.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"5 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer-By-Layer Approach to Improve the Capacitance of Conducting Polymer Films\",\"authors\":\"Małgorzata Skorupa, Ethan Cao, Adrian Barylski, Sara Shakibania, Sandra Pluczyk-Małek, Zuzanna Siwy, Katarzyna Krukiewicz\",\"doi\":\"10.1002/aelm.202400761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the pursuit of energy storage devices offering high power density, rapid charge and discharge rates, a layer-by-layer deposition approach is shown to improve the capacitive properties of conducting polymer-based devices. This work describes the synthesis and characterization of a composite material based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-ethylenedioxypyrrole) (PEDOP) for supercapacitor applications. PEDOT and PEDOP are sequentially electropolymerized using cyclic voltammetry to form bilayer structures, overcoming challenges associated with copolymerization. The evaluation of electrochemical performance of the PEDOT/PEDOP composite reveals superior areal capacitance (42.2 ± 2.8 mF cm<sup>−2</sup> at the scan rate of 5 mV s<sup>−1</sup>) outperforming both homopolymers by up to 30%. Microscopic and spectroscopic surface analysis confirm the uniform coating of PEDOT/PEDOP and enhanced surface roughness resulting from the formation of 3D nanostructures, contributing to improved electrochemical performance. Further electrochemical impedance spectroscopic analysis demonstrates low charge transfer resistance (25 ± 8 Ω) and high energy density with respect to the area of the electrode (3.53 ± 0.3 µWh cm<sup>−2</sup> at 55 µW cm<sup>−2</sup>), making PEDOT/PEDOP composite a promising material for high-performance supercapacitors.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400761\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400761","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在追求提供高功率密度、快速充放电速率的储能器件的过程中,一种逐层沉积方法被证明可以改善导电聚合物基器件的电容性能。本文描述了一种基于聚(3,4-乙烯二氧噻吩)(PEDOT)和聚(3,4-乙烯二氧吡咯)(PEDOP)的超级电容器复合材料的合成和表征。利用循环伏安法对PEDOT和PEDOP进行顺序电聚合,形成双层结构,克服了共聚相关的挑战。电化学性能评价表明,PEDOT/PEDOP复合材料的面电容(扫描速率为5 mV s−1时为42.2±2.8 mF cm−2)优于两种均聚物高达30%。微观和光谱表面分析证实了PEDOT/PEDOP的均匀涂层和三维纳米结构形成的表面粗糙度增强,有助于提高电化学性能。进一步的电化学阻抗谱分析表明,相对于电极面积,PEDOT/PEDOP复合材料具有低电荷转移电阻(25±8 Ω)和高能量密度(在55µW cm−2时为3.53±0.3µWh cm−2),这使得PEDOT/PEDOP复合材料成为高性能超级电容器的有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Layer-By-Layer Approach to Improve the Capacitance of Conducting Polymer Films

Layer-By-Layer Approach to Improve the Capacitance of Conducting Polymer Films
In the pursuit of energy storage devices offering high power density, rapid charge and discharge rates, a layer-by-layer deposition approach is shown to improve the capacitive properties of conducting polymer-based devices. This work describes the synthesis and characterization of a composite material based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-ethylenedioxypyrrole) (PEDOP) for supercapacitor applications. PEDOT and PEDOP are sequentially electropolymerized using cyclic voltammetry to form bilayer structures, overcoming challenges associated with copolymerization. The evaluation of electrochemical performance of the PEDOT/PEDOP composite reveals superior areal capacitance (42.2 ± 2.8 mF cm−2 at the scan rate of 5 mV s−1) outperforming both homopolymers by up to 30%. Microscopic and spectroscopic surface analysis confirm the uniform coating of PEDOT/PEDOP and enhanced surface roughness resulting from the formation of 3D nanostructures, contributing to improved electrochemical performance. Further electrochemical impedance spectroscopic analysis demonstrates low charge transfer resistance (25 ± 8 Ω) and high energy density with respect to the area of the electrode (3.53 ± 0.3 µWh cm−2 at 55 µW cm−2), making PEDOT/PEDOP composite a promising material for high-performance supercapacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信