具有增强灵敏度和可调性的电子CPA激光器

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Minye Yang, Lukang Wang, Zhilu Ye, Qi Zhong, Baolong Jian, Xiaohui Zhang, Şahin K. Özdemir, Ming Liu
{"title":"具有增强灵敏度和可调性的电子CPA激光器","authors":"Minye Yang, Lukang Wang, Zhilu Ye, Qi Zhong, Baolong Jian, Xiaohui Zhang, Şahin K. Özdemir, Ming Liu","doi":"10.1002/aelm.202400722","DOIUrl":null,"url":null,"abstract":"Exceptional point degeneracies, which are spectral singularities of non‐Hermitian systems, have been widely utilized for building optical, mechanical, or electrical sensing systems with much larger responses than those utilizing Hermitian degeneracies. However, such systems suffer from enhanced noise, which negates the enhanced response and thus does not provide any improvement in signal‐to‐noise ratio. Recently, the coherent perfect absorber (CPA)‐laser, which also utilizes non‐Hermitian singularity, has been used in sensing systems resulting in better noise robustness and enhanced responsivity. Nonetheless, CPA‐laser (CPAL) implementation requires all system parameters to be immutable, which hinders progress toward their practical use for sensing purposes. Here, a tunable electronic CPA‐laser is reported that overcomes these obstacles providing ultrahigh sensitivity as validated in the experiments for monitoring arterial pressure and respiration. This CPAL sensing scheme utilizes inductive coupling between gain and loss sub‐components and thereby the whole system can be decomposed into an active reader and a passive sensor, which enables better tunability and performance compared to previously reported CPAL systems. Moreover, the proposed CPAL system exhibits better performance compared to exceptional point‐based systems having a similar circuit structure. This research paves the way for exploring electronic CPAL for sensing applications and may have a profound impact on the next‐generation, ultrasensitive electromagnetic sensing system.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"26 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic CPA‐Laser Having Enhanced Sensitivity and Tunability\",\"authors\":\"Minye Yang, Lukang Wang, Zhilu Ye, Qi Zhong, Baolong Jian, Xiaohui Zhang, Şahin K. Özdemir, Ming Liu\",\"doi\":\"10.1002/aelm.202400722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exceptional point degeneracies, which are spectral singularities of non‐Hermitian systems, have been widely utilized for building optical, mechanical, or electrical sensing systems with much larger responses than those utilizing Hermitian degeneracies. However, such systems suffer from enhanced noise, which negates the enhanced response and thus does not provide any improvement in signal‐to‐noise ratio. Recently, the coherent perfect absorber (CPA)‐laser, which also utilizes non‐Hermitian singularity, has been used in sensing systems resulting in better noise robustness and enhanced responsivity. Nonetheless, CPA‐laser (CPAL) implementation requires all system parameters to be immutable, which hinders progress toward their practical use for sensing purposes. Here, a tunable electronic CPA‐laser is reported that overcomes these obstacles providing ultrahigh sensitivity as validated in the experiments for monitoring arterial pressure and respiration. This CPAL sensing scheme utilizes inductive coupling between gain and loss sub‐components and thereby the whole system can be decomposed into an active reader and a passive sensor, which enables better tunability and performance compared to previously reported CPAL systems. Moreover, the proposed CPAL system exhibits better performance compared to exceptional point‐based systems having a similar circuit structure. This research paves the way for exploring electronic CPAL for sensing applications and may have a profound impact on the next‐generation, ultrasensitive electromagnetic sensing system.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400722\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400722","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

异常点简并是一种非厄米系统的谱奇点,它被广泛应用于光学、机械或电传感系统中,这些系统的响应比厄米简并系统大得多。然而,这样的系统受到增强的噪声的影响,这抵消了增强的响应,因此不能提供任何信噪比的改善。近年来,利用非厄米奇点的相干完全吸收(CPA)激光器已被用于传感系统,具有更好的噪声鲁棒性和更高的响应性。尽管如此,CPA - laser (CPAL)的实现要求所有系统参数都是不可变的,这阻碍了它们在传感目的上的实际应用。在这里,一种可调谐的电子CPA -激光器克服了这些障碍,提供了超高的灵敏度,并在监测动脉压力和呼吸的实验中得到了验证。该CPAL传感方案利用增益和损耗子元件之间的电感耦合,因此整个系统可以分解为有源读取器和无源传感器,与先前报道的CPAL系统相比,具有更好的可调性和性能。此外,与具有类似电路结构的特殊点基系统相比,所提出的CPAL系统表现出更好的性能。这项研究为探索电子CPAL传感应用铺平了道路,并可能对下一代超灵敏电磁传感系统产生深远的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electronic CPA‐Laser Having Enhanced Sensitivity and Tunability
Exceptional point degeneracies, which are spectral singularities of non‐Hermitian systems, have been widely utilized for building optical, mechanical, or electrical sensing systems with much larger responses than those utilizing Hermitian degeneracies. However, such systems suffer from enhanced noise, which negates the enhanced response and thus does not provide any improvement in signal‐to‐noise ratio. Recently, the coherent perfect absorber (CPA)‐laser, which also utilizes non‐Hermitian singularity, has been used in sensing systems resulting in better noise robustness and enhanced responsivity. Nonetheless, CPA‐laser (CPAL) implementation requires all system parameters to be immutable, which hinders progress toward their practical use for sensing purposes. Here, a tunable electronic CPA‐laser is reported that overcomes these obstacles providing ultrahigh sensitivity as validated in the experiments for monitoring arterial pressure and respiration. This CPAL sensing scheme utilizes inductive coupling between gain and loss sub‐components and thereby the whole system can be decomposed into an active reader and a passive sensor, which enables better tunability and performance compared to previously reported CPAL systems. Moreover, the proposed CPAL system exhibits better performance compared to exceptional point‐based systems having a similar circuit structure. This research paves the way for exploring electronic CPAL for sensing applications and may have a profound impact on the next‐generation, ultrasensitive electromagnetic sensing system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信