IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Xuan Wang, Zhongtao Shen, Yanbin Shui, Shubin Liu
{"title":"Research on high-performance, real-time periodic signal detection method based on field-programmable gate arrays (FPGAs).","authors":"Xuan Wang, Zhongtao Shen, Yanbin Shui, Shubin Liu","doi":"10.1063/5.0243520","DOIUrl":null,"url":null,"abstract":"<p><p>Long-Time Coherent Integration (LTCI) utilizes digital integration to combine multiple coherent cycles, thereby improving the signal-to-noise ratio (SNR). Our previous work introduced single-bit LTCI, an approach optimized for FPGA implementation, but faced challenges of output saturation at high SNR levels and inherent limitations in SNR gain (SNRG), which are insufficient for certain applications. This paper presents a threshold tracking method that improves the performance of single-bit LTCI in high-SNR scenarios. In addition, a sampling rate enhancement technique and a Kalman filtering method are introduced to further enhance the SNR of the processed signals. An FPGA-based prototype was developed to validate these methods. The results demonstrate that the threshold tracking method extends the measurable input SNR range to 30. Under the specified conditions, the sampling rate enhancement technique yields a 30% improvement in SNR over the original method, while the Kalman filter reduces noise levels to 60% of their original values.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0243520","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

长时间相干集成(LTCI)利用数字集成来组合多个相干周期,从而提高信噪比(SNR)。我们之前的工作介绍了单比特 LTCI,这是一种针对 FPGA 实现进行了优化的方法,但面临着高 SNR 水平下的输出饱和以及 SNR 增益(SNRG)的固有限制等挑战,这些都不足以满足某些应用的需要。本文提出了一种阈值跟踪方法,可提高单比特 LTCI 在高 SNR 场景下的性能。此外,还引入了采样率增强技术和卡尔曼滤波方法,以进一步提高处理后信号的 SNR。为验证这些方法,开发了一个基于 FPGA 的原型。结果表明,阈值跟踪方法将可测量的输入 SNR 范围扩大到 30。在特定条件下,采样率增强技术的信噪比比原始方法提高了 30%,而卡尔曼滤波器则将噪声水平降低到原始值的 60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on high-performance, real-time periodic signal detection method based on field-programmable gate arrays (FPGAs).

Long-Time Coherent Integration (LTCI) utilizes digital integration to combine multiple coherent cycles, thereby improving the signal-to-noise ratio (SNR). Our previous work introduced single-bit LTCI, an approach optimized for FPGA implementation, but faced challenges of output saturation at high SNR levels and inherent limitations in SNR gain (SNRG), which are insufficient for certain applications. This paper presents a threshold tracking method that improves the performance of single-bit LTCI in high-SNR scenarios. In addition, a sampling rate enhancement technique and a Kalman filtering method are introduced to further enhance the SNR of the processed signals. An FPGA-based prototype was developed to validate these methods. The results demonstrate that the threshold tracking method extends the measurable input SNR range to 30. Under the specified conditions, the sampling rate enhancement technique yields a 30% improvement in SNR over the original method, while the Kalman filter reduces noise levels to 60% of their original values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信