Alberta N A Aryee, Christabel Tachie, Aleksei Kaleda
{"title":"盐介导的自然发酵木薯中挥发性化合物的形成。","authors":"Alberta N A Aryee, Christabel Tachie, Aleksei Kaleda","doi":"10.1016/j.fochx.2024.102101","DOIUrl":null,"url":null,"abstract":"<p><p>Cassava is a starchy staple typically consumed in tropical countries; however, its high moisture content renders it susceptible to post-harvest deterioration. Fermentation has been used to improve shelf-life, functional properties, nutrient bioavailability, minimize toxic compounds, and alter aroma. In this study, the effect of added salt (5-25 %) on the pH, titratable acidity (TTA), and volatile compounds (VOCs) in cassava fermented was investigated. A sharp reduction in pH from 6.98 to 6.20 to 4.81-4.00 and concomitant increase in TTA (0.027-0.297 %) was observed in all the samples on day 2 except the 25 % added salt ferments. The 32 VOCs quantitated on day 50 by headspace solid-phase microextraction (HS-SPME) arrow coupled with gas chromatography-mass spectrometry (GC-MS) and classified as: alcohol (9), aldehydes (6), ketones (5), carboxylic acids (5), esters (3), nitriles (2), phenol (1) and hydrocarbon (1) were affected by the amount of added salt. PCA explained 68.50 % of the variance and cluster samples based on the similarities between the identified VOCs and showed that fermentation mediated by 15 % added salt presented a VOCs profile comparable to using 20 % of salt, with the former representing a lower cost. The addition of salt can be used to control acidification, adopted as an effective preservation technique, and mediate VOCs production during cassava fermentation.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102101"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732480/pdf/","citationCount":"0","resultStr":"{\"title\":\"Formation of volatile compounds in salt-mediated naturally fermented cassava.\",\"authors\":\"Alberta N A Aryee, Christabel Tachie, Aleksei Kaleda\",\"doi\":\"10.1016/j.fochx.2024.102101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cassava is a starchy staple typically consumed in tropical countries; however, its high moisture content renders it susceptible to post-harvest deterioration. Fermentation has been used to improve shelf-life, functional properties, nutrient bioavailability, minimize toxic compounds, and alter aroma. In this study, the effect of added salt (5-25 %) on the pH, titratable acidity (TTA), and volatile compounds (VOCs) in cassava fermented was investigated. A sharp reduction in pH from 6.98 to 6.20 to 4.81-4.00 and concomitant increase in TTA (0.027-0.297 %) was observed in all the samples on day 2 except the 25 % added salt ferments. The 32 VOCs quantitated on day 50 by headspace solid-phase microextraction (HS-SPME) arrow coupled with gas chromatography-mass spectrometry (GC-MS) and classified as: alcohol (9), aldehydes (6), ketones (5), carboxylic acids (5), esters (3), nitriles (2), phenol (1) and hydrocarbon (1) were affected by the amount of added salt. PCA explained 68.50 % of the variance and cluster samples based on the similarities between the identified VOCs and showed that fermentation mediated by 15 % added salt presented a VOCs profile comparable to using 20 % of salt, with the former representing a lower cost. The addition of salt can be used to control acidification, adopted as an effective preservation technique, and mediate VOCs production during cassava fermentation.</p>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"25 \",\"pages\":\"102101\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732480/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.fochx.2024.102101\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2024.102101","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Formation of volatile compounds in salt-mediated naturally fermented cassava.
Cassava is a starchy staple typically consumed in tropical countries; however, its high moisture content renders it susceptible to post-harvest deterioration. Fermentation has been used to improve shelf-life, functional properties, nutrient bioavailability, minimize toxic compounds, and alter aroma. In this study, the effect of added salt (5-25 %) on the pH, titratable acidity (TTA), and volatile compounds (VOCs) in cassava fermented was investigated. A sharp reduction in pH from 6.98 to 6.20 to 4.81-4.00 and concomitant increase in TTA (0.027-0.297 %) was observed in all the samples on day 2 except the 25 % added salt ferments. The 32 VOCs quantitated on day 50 by headspace solid-phase microextraction (HS-SPME) arrow coupled with gas chromatography-mass spectrometry (GC-MS) and classified as: alcohol (9), aldehydes (6), ketones (5), carboxylic acids (5), esters (3), nitriles (2), phenol (1) and hydrocarbon (1) were affected by the amount of added salt. PCA explained 68.50 % of the variance and cluster samples based on the similarities between the identified VOCs and showed that fermentation mediated by 15 % added salt presented a VOCs profile comparable to using 20 % of salt, with the former representing a lower cost. The addition of salt can be used to control acidification, adopted as an effective preservation technique, and mediate VOCs production during cassava fermentation.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.