{"title":"用于监测细胞凋亡过程中细胞因子动态表达的智能无创 SERS 免疫传感器","authors":"Chenyu Zhang, Zutao Chen, Guohua Qi, Yu Tian, Xiongjian Zheng, Xingkang Diao, Jiao Kong, Xingkai Ju, Jing Li, Shaojun Dong, Yongdong Jin","doi":"10.1021/acs.analchem.4c05539","DOIUrl":null,"url":null,"abstract":"Accompanying the occurrence of inflammatory reaction to release cytokines, pyroptosis can activate an immune response for resistance against cancer. Consequently, elevated levels of cytokines released by cancer cells are highly correlated with the effectiveness of cancer treatment. Herein, a noninvasive surface-enhanced Raman spectroscopy (SERS) immunosensor was developed to sensitively and specifically measure the tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, during the cell pyroptosis process. The sandwiched structure of the sensor is functionalized with a TNF-α binding antibody for detecting TNF-α at concentrations as low as 1 pg/mL. Importantly, electrical stimulation (ES) can fleetly trigger cancer cell pyroptosis to induce the overexpression of receptor interacting protein 3 (RIP3), which is a significant protein that regulates the inflammatory response. The overexpression of RIP3 can activate caspase-1 to promote the upregulation of cytokine levels. Notably, the cytokine levels of TNF-α released from cancer cells (MCF-7 cells) were apparently higher than those of normal cells (MCF-10A cells) during pyroptosis detected by the SERS immunosensors. Due to its obvious superiorities of simple fabrication and fast readout without sample pretreatment, the developed SERS platform has a potential application value for diagnosis and treatment of cancer.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"43 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart and Noninvasive SERS Immunosensors for Monitoring Dynamic Expression of Cytokines during Cell Pyroptosis\",\"authors\":\"Chenyu Zhang, Zutao Chen, Guohua Qi, Yu Tian, Xiongjian Zheng, Xingkang Diao, Jiao Kong, Xingkai Ju, Jing Li, Shaojun Dong, Yongdong Jin\",\"doi\":\"10.1021/acs.analchem.4c05539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accompanying the occurrence of inflammatory reaction to release cytokines, pyroptosis can activate an immune response for resistance against cancer. Consequently, elevated levels of cytokines released by cancer cells are highly correlated with the effectiveness of cancer treatment. Herein, a noninvasive surface-enhanced Raman spectroscopy (SERS) immunosensor was developed to sensitively and specifically measure the tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, during the cell pyroptosis process. The sandwiched structure of the sensor is functionalized with a TNF-α binding antibody for detecting TNF-α at concentrations as low as 1 pg/mL. Importantly, electrical stimulation (ES) can fleetly trigger cancer cell pyroptosis to induce the overexpression of receptor interacting protein 3 (RIP3), which is a significant protein that regulates the inflammatory response. The overexpression of RIP3 can activate caspase-1 to promote the upregulation of cytokine levels. Notably, the cytokine levels of TNF-α released from cancer cells (MCF-7 cells) were apparently higher than those of normal cells (MCF-10A cells) during pyroptosis detected by the SERS immunosensors. Due to its obvious superiorities of simple fabrication and fast readout without sample pretreatment, the developed SERS platform has a potential application value for diagnosis and treatment of cancer.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05539\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05539","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Smart and Noninvasive SERS Immunosensors for Monitoring Dynamic Expression of Cytokines during Cell Pyroptosis
Accompanying the occurrence of inflammatory reaction to release cytokines, pyroptosis can activate an immune response for resistance against cancer. Consequently, elevated levels of cytokines released by cancer cells are highly correlated with the effectiveness of cancer treatment. Herein, a noninvasive surface-enhanced Raman spectroscopy (SERS) immunosensor was developed to sensitively and specifically measure the tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, during the cell pyroptosis process. The sandwiched structure of the sensor is functionalized with a TNF-α binding antibody for detecting TNF-α at concentrations as low as 1 pg/mL. Importantly, electrical stimulation (ES) can fleetly trigger cancer cell pyroptosis to induce the overexpression of receptor interacting protein 3 (RIP3), which is a significant protein that regulates the inflammatory response. The overexpression of RIP3 can activate caspase-1 to promote the upregulation of cytokine levels. Notably, the cytokine levels of TNF-α released from cancer cells (MCF-7 cells) were apparently higher than those of normal cells (MCF-10A cells) during pyroptosis detected by the SERS immunosensors. Due to its obvious superiorities of simple fabrication and fast readout without sample pretreatment, the developed SERS platform has a potential application value for diagnosis and treatment of cancer.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.