Kun Yang , Hyun Woo Jeong , Jaewook Lee , Yong Hyeon Cho , Ju Yong Park , Hyojun Choi , Young Yong Kim , Younghwan Lee , Yunseok Kim , Min Hyuk Park
{"title":"通过对钨电极的多态性和质地进行工程设计来调节铁电 Hf0.5Zr0.5O2 薄膜的质地","authors":"Kun Yang , Hyun Woo Jeong , Jaewook Lee , Yong Hyeon Cho , Ju Yong Park , Hyojun Choi , Young Yong Kim , Younghwan Lee , Yunseok Kim , Min Hyuk Park","doi":"10.1016/j.jmat.2025.101015","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel approach to achieving highly reliable, low-voltage polarization switching of ferroelectric Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO) thin films using polymorph- and orientation-controlled W electrodes ((111)-textured α-W and (200)-textured β-W) by adjusting the sputtering conditions. We demonstrated the formation of (111) and (002)/(020)-textured HZO films on the (111)-textured α-W and (200)-textured β-W electrodes, respectively. Under a low-voltage pulse of 1.2 V (1.5 MV/cm), α-W/HZO/α-W and β-W/HZO/β-W capacitors exhibited double-remanent polarization (2<em>P</em><sub>r</sub>) values of 29.23 μC/cm<sup>2</sup> and 25.16 μC/cm<sup>2</sup>, which were higher than that of the TiN/HZO/TiN capacitor by 33% and 14%, respectively, and a high endurance of 10<sup>9</sup> cycles without hard-breakdown. The differences in the ferroelectric properties and switching kinetics were understood based on the polymorphism and texture of the HZO films influenced by electrode materials.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 101015"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Texture modulation of ferroelectric Hf0.5Zr0.5O2 thin films by engineering the polymorphism and texture of tungsten electrodes\",\"authors\":\"Kun Yang , Hyun Woo Jeong , Jaewook Lee , Yong Hyeon Cho , Ju Yong Park , Hyojun Choi , Young Yong Kim , Younghwan Lee , Yunseok Kim , Min Hyuk Park\",\"doi\":\"10.1016/j.jmat.2025.101015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a novel approach to achieving highly reliable, low-voltage polarization switching of ferroelectric Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> (HZO) thin films using polymorph- and orientation-controlled W electrodes ((111)-textured α-W and (200)-textured β-W) by adjusting the sputtering conditions. We demonstrated the formation of (111) and (002)/(020)-textured HZO films on the (111)-textured α-W and (200)-textured β-W electrodes, respectively. Under a low-voltage pulse of 1.2 V (1.5 MV/cm), α-W/HZO/α-W and β-W/HZO/β-W capacitors exhibited double-remanent polarization (2<em>P</em><sub>r</sub>) values of 29.23 μC/cm<sup>2</sup> and 25.16 μC/cm<sup>2</sup>, which were higher than that of the TiN/HZO/TiN capacitor by 33% and 14%, respectively, and a high endurance of 10<sup>9</sup> cycles without hard-breakdown. The differences in the ferroelectric properties and switching kinetics were understood based on the polymorphism and texture of the HZO films influenced by electrode materials.</div></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"11 4\",\"pages\":\"Article 101015\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235284782500005X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235284782500005X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种新的方法,通过调整溅射条件,利用多晶和取向控制的W电极((111)-织构α-W和(200)-织构β-W)实现铁电Hf0.5Zr0.5O2 (HZO)薄膜高可靠的低压极化开关。我们分别在(111)织构α-W和(200)织构β-W电极上形成了(111)和(002)/(020)织构的HZO薄膜。在1.2 V (1.5 MV/cm)低压脉冲下,α-W/HZO/α-W和β-W/HZO/β-W电容器的双剩余极化(2Pr)值分别为29.23 μC/cm2和25.16 μC/cm2,分别比TiN/HZO/TiN电容器高33%和14%,且具有109次循环而不发生硬击穿的高耐久性。基于电极材料对HZO薄膜的多态和织构的影响,了解了其铁电性质和开关动力学的差异。
Texture modulation of ferroelectric Hf0.5Zr0.5O2 thin films by engineering the polymorphism and texture of tungsten electrodes
This study proposes a novel approach to achieving highly reliable, low-voltage polarization switching of ferroelectric Hf0.5Zr0.5O2 (HZO) thin films using polymorph- and orientation-controlled W electrodes ((111)-textured α-W and (200)-textured β-W) by adjusting the sputtering conditions. We demonstrated the formation of (111) and (002)/(020)-textured HZO films on the (111)-textured α-W and (200)-textured β-W electrodes, respectively. Under a low-voltage pulse of 1.2 V (1.5 MV/cm), α-W/HZO/α-W and β-W/HZO/β-W capacitors exhibited double-remanent polarization (2Pr) values of 29.23 μC/cm2 and 25.16 μC/cm2, which were higher than that of the TiN/HZO/TiN capacitor by 33% and 14%, respectively, and a high endurance of 109 cycles without hard-breakdown. The differences in the ferroelectric properties and switching kinetics were understood based on the polymorphism and texture of the HZO films influenced by electrode materials.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.