{"title":"TME在非小细胞肺癌免疫检查点阻断抵抗中的作用。","authors":"Yuening Dai, Xueqi Tian, Xuanting Ye, Yabin Gong, Ling Xu, Lijing Jiao","doi":"10.20517/cdr.2024.166","DOIUrl":null,"url":null,"abstract":"<p><p>Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways. Additionally, alterations in the tumor microenvironment (TME) play a pivotal role in driving immunotherapy resistance. Primary resistance is mainly attributed to TME alterations, including mutations and co-mutations, modulation of T cell infiltration, enrichment of M2 tumor-associated macrophages (M2-TAMs) and mucosal-associated invariant T (MAIT) cells, vascular endothelial growth factor (VEGF), and pulmonary fibrosis. Acquired resistance mainly stems from changes in cellular infiltration patterns leading to \"cold\" or \"hot\" tumors, altered interferon (IFN) signaling pathway expression, involvement of extracellular vesicles (EVs), and oxidative stress responses, as well as post-treatment gene mutations and circadian rhythm disruption (CRD). This review presents an overview of various mechanisms underlying resistance to ICB, elucidates the alterations in the TME during primary, adaptive, and acquired resistance, and discusses existing strategies for overcoming ICB resistance.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"52"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724356/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer.\",\"authors\":\"Yuening Dai, Xueqi Tian, Xuanting Ye, Yabin Gong, Ling Xu, Lijing Jiao\",\"doi\":\"10.20517/cdr.2024.166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways. Additionally, alterations in the tumor microenvironment (TME) play a pivotal role in driving immunotherapy resistance. Primary resistance is mainly attributed to TME alterations, including mutations and co-mutations, modulation of T cell infiltration, enrichment of M2 tumor-associated macrophages (M2-TAMs) and mucosal-associated invariant T (MAIT) cells, vascular endothelial growth factor (VEGF), and pulmonary fibrosis. Acquired resistance mainly stems from changes in cellular infiltration patterns leading to \\\"cold\\\" or \\\"hot\\\" tumors, altered interferon (IFN) signaling pathway expression, involvement of extracellular vesicles (EVs), and oxidative stress responses, as well as post-treatment gene mutations and circadian rhythm disruption (CRD). This review presents an overview of various mechanisms underlying resistance to ICB, elucidates the alterations in the TME during primary, adaptive, and acquired resistance, and discusses existing strategies for overcoming ICB resistance.</p>\",\"PeriodicalId\":70759,\"journal\":{\"name\":\"癌症耐药(英文)\",\"volume\":\"7 \",\"pages\":\"52\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"癌症耐药(英文)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.20517/cdr.2024.166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症耐药(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/cdr.2024.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer.
Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways. Additionally, alterations in the tumor microenvironment (TME) play a pivotal role in driving immunotherapy resistance. Primary resistance is mainly attributed to TME alterations, including mutations and co-mutations, modulation of T cell infiltration, enrichment of M2 tumor-associated macrophages (M2-TAMs) and mucosal-associated invariant T (MAIT) cells, vascular endothelial growth factor (VEGF), and pulmonary fibrosis. Acquired resistance mainly stems from changes in cellular infiltration patterns leading to "cold" or "hot" tumors, altered interferon (IFN) signaling pathway expression, involvement of extracellular vesicles (EVs), and oxidative stress responses, as well as post-treatment gene mutations and circadian rhythm disruption (CRD). This review presents an overview of various mechanisms underlying resistance to ICB, elucidates the alterations in the TME during primary, adaptive, and acquired resistance, and discusses existing strategies for overcoming ICB resistance.