{"title":"离子对反相超高效液相色谱和质谱同时分析典型生物基质中多种磷酸化代谢物","authors":"Huan Wang, Qinsheng Chen, Yuanpeng Wu, Li Xu, Qi Wang, Qingyu Hu, Huiru Tang","doi":"10.1021/acs.analchem.4c04692","DOIUrl":null,"url":null,"abstract":"Simultaneous analysis of multiple phosphorylated metabolites (phosphorylated metabolome) in biological samples is vital to reveal their physiological and pathophysiological functions, which is extremely challenging due to their low abundance in some biological matrices, high hydrophilicity, and poor chromatographic behavior. Here, we developed a new method with ion-pair reversed-phase ultrahigh-performance liquid chromatography and mass spectrometry using BEH C18 columns modified with hybrid surface technology. This method demonstrated good performances for various phosphorylated metabolites, including phosphorylated sugars and amino acids, nucleotides, NAD-based cofactors, and acyl-CoAs in a single run using standard LC systems. Specifically, the method showed good retention (capacity factor > 2) and reproducibility (Δ<i>t</i><sub>R</sub> < 0.09 min, <i>n</i> = 6), peak symmetry (tailing factor < 2), and sensitivity (limit-of-detection < 238 fmol-on-column with QTOFMS) for all tested analytes especially for the medium- and/or long-chain acyl-CoAs. The method demonstrated reproducible applicability across numerous biological matrices, including tissue (liver), human biofluids (urine, plasma), cells, and feces, and revealed significant molecular phenotypic differences in phosphorylated metabolite composition.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"87 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Profiling of Multiple Phosphorylated Metabolites in Typical Biological Matrices via Ion-Pair Reversed-Phase Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry\",\"authors\":\"Huan Wang, Qinsheng Chen, Yuanpeng Wu, Li Xu, Qi Wang, Qingyu Hu, Huiru Tang\",\"doi\":\"10.1021/acs.analchem.4c04692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous analysis of multiple phosphorylated metabolites (phosphorylated metabolome) in biological samples is vital to reveal their physiological and pathophysiological functions, which is extremely challenging due to their low abundance in some biological matrices, high hydrophilicity, and poor chromatographic behavior. Here, we developed a new method with ion-pair reversed-phase ultrahigh-performance liquid chromatography and mass spectrometry using BEH C18 columns modified with hybrid surface technology. This method demonstrated good performances for various phosphorylated metabolites, including phosphorylated sugars and amino acids, nucleotides, NAD-based cofactors, and acyl-CoAs in a single run using standard LC systems. Specifically, the method showed good retention (capacity factor > 2) and reproducibility (Δ<i>t</i><sub>R</sub> < 0.09 min, <i>n</i> = 6), peak symmetry (tailing factor < 2), and sensitivity (limit-of-detection < 238 fmol-on-column with QTOFMS) for all tested analytes especially for the medium- and/or long-chain acyl-CoAs. The method demonstrated reproducible applicability across numerous biological matrices, including tissue (liver), human biofluids (urine, plasma), cells, and feces, and revealed significant molecular phenotypic differences in phosphorylated metabolite composition.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c04692\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04692","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
同时分析生物样品中的多种磷酸化代谢物(磷酸化代谢物组)对于揭示其生理和病理生理功能至关重要,由于它们在某些生物基质中的丰度低,亲水性高,色谱行为差,因此极具挑战性。本研究利用混合表面技术修饰的BEH C18色谱柱,建立了离子对反相超高效液相色谱和质谱分析新方法。该方法在标准液相色谱系统的单次运行中对各种磷酸化代谢物(包括磷酸化糖和氨基酸、核苷酸、基于nadd的辅助因子和酰基辅酶a)表现出良好的性能。具体而言,该方法具有良好的保留(容量因子>;2)和可重复性(ΔtR <;0.09 min, n = 6),峰对称(尾尾因子<;2)、灵敏度(检出限<;所有测试的分析物,特别是中链和/或长链酰基辅酶a。该方法证明了多种生物基质的可重复性适用性,包括组织(肝脏)、人体生物液体(尿液、血浆)、细胞和粪便,并揭示了磷酸化代谢物组成的显著分子表型差异。
Simultaneous Profiling of Multiple Phosphorylated Metabolites in Typical Biological Matrices via Ion-Pair Reversed-Phase Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry
Simultaneous analysis of multiple phosphorylated metabolites (phosphorylated metabolome) in biological samples is vital to reveal their physiological and pathophysiological functions, which is extremely challenging due to their low abundance in some biological matrices, high hydrophilicity, and poor chromatographic behavior. Here, we developed a new method with ion-pair reversed-phase ultrahigh-performance liquid chromatography and mass spectrometry using BEH C18 columns modified with hybrid surface technology. This method demonstrated good performances for various phosphorylated metabolites, including phosphorylated sugars and amino acids, nucleotides, NAD-based cofactors, and acyl-CoAs in a single run using standard LC systems. Specifically, the method showed good retention (capacity factor > 2) and reproducibility (ΔtR < 0.09 min, n = 6), peak symmetry (tailing factor < 2), and sensitivity (limit-of-detection < 238 fmol-on-column with QTOFMS) for all tested analytes especially for the medium- and/or long-chain acyl-CoAs. The method demonstrated reproducible applicability across numerous biological matrices, including tissue (liver), human biofluids (urine, plasma), cells, and feces, and revealed significant molecular phenotypic differences in phosphorylated metabolite composition.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.