Rania Bajunaid, Chaoqun Niu, Catherine Hambly, Zongfang Liu, Yosuke Yamada, Heliodoro Aleman-Mateo, Liam J. Anderson, Lenore Arab, Issad Baddou, Linda Bandini, Kweku Bedu-Addo, Ellen E. Blaak, Carlijn V. C. Bouten, Soren Brage, Maciej S. Buchowski, Nancy F. Butte, Stefan G. J. A. Camps, Regina Casper, Graeme L. Close, Jamie A. Cooper, Richard Cooper, Sai Krupa Das, Peter S. W. Davies, Prasangi Dabare, Lara R. Dugas, Simon Eaton, Ulf Ekelund, Sonja Entringer, Terrence Forrester, Barry W. Fudge, Melanie Gillingham, Annelies H. Goris, Michael Gurven, Asmaa El Hamdouchi, Hinke H. Haisma, Daniel Hoffman, Marije B. Hoos, Sumei Hu, Noorjehan Joonas, Annemiek M. Joosen, Peter Katzmarzyk, Misaka Kimura, William E. Kraus, Wantanee Kriengsinyos, Rebecca Kuriyan, Robert F. Kushner, Estelle V. Lambert, Pulani Lanerolle, Christel L. Larsson, William R. Leonard, Nader Lessan, Marie Löf, Corby K. Martin, Eric Matsiko, Anine C. Medin, James C. Morehen, James P. Morton, Aviva Must, Marian L. Neuhouser, Theresa A. Nicklas, Christine D. Nyström, Robert M. Ojiambo, Kirsi H. Pietiläinen, Yannis P. Pitsiladis, Jacob Plange-Rhule, Guy Plasqui, Ross L. Prentice, Susan B. Racette, David A. Raichlen, Eric Ravussin, Leanne M. Redman, John J. Reilly, Rebecca Reynolds, Susan B. Roberts, Dulani Samaranayakem, Luis B. Sardinha, Analiza M. Silva, Anders M. Sjödin, Marina Stamatiou, Eric Stice, Samuel S. Urlacher, Ludo M. Van Etten, Edgar G. A. H. van Mil, George Wilson, Jack A. Yanovski, Tsukasa Yoshida, Xueying Zhang, Alexia J. Murphy-Alford, Srishti Sinha, Cornelia U. Loechl, Amy H. Luke, Herman Pontzer, Jennifer Rood, Hiroyuki Sagayama, Dale A. Schoeller, Klaas R. Westerterp, William W. Wong, John R. Speakman
{"title":"从6,497双标签水测量得出的预测方程可以检测错误的自我报告的能量摄入","authors":"Rania Bajunaid, Chaoqun Niu, Catherine Hambly, Zongfang Liu, Yosuke Yamada, Heliodoro Aleman-Mateo, Liam J. Anderson, Lenore Arab, Issad Baddou, Linda Bandini, Kweku Bedu-Addo, Ellen E. Blaak, Carlijn V. C. Bouten, Soren Brage, Maciej S. Buchowski, Nancy F. Butte, Stefan G. J. A. Camps, Regina Casper, Graeme L. Close, Jamie A. Cooper, Richard Cooper, Sai Krupa Das, Peter S. W. Davies, Prasangi Dabare, Lara R. Dugas, Simon Eaton, Ulf Ekelund, Sonja Entringer, Terrence Forrester, Barry W. Fudge, Melanie Gillingham, Annelies H. Goris, Michael Gurven, Asmaa El Hamdouchi, Hinke H. Haisma, Daniel Hoffman, Marije B. Hoos, Sumei Hu, Noorjehan Joonas, Annemiek M. Joosen, Peter Katzmarzyk, Misaka Kimura, William E. Kraus, Wantanee Kriengsinyos, Rebecca Kuriyan, Robert F. Kushner, Estelle V. Lambert, Pulani Lanerolle, Christel L. Larsson, William R. Leonard, Nader Lessan, Marie Löf, Corby K. Martin, Eric Matsiko, Anine C. Medin, James C. Morehen, James P. Morton, Aviva Must, Marian L. Neuhouser, Theresa A. Nicklas, Christine D. Nyström, Robert M. Ojiambo, Kirsi H. Pietiläinen, Yannis P. Pitsiladis, Jacob Plange-Rhule, Guy Plasqui, Ross L. Prentice, Susan B. Racette, David A. Raichlen, Eric Ravussin, Leanne M. Redman, John J. Reilly, Rebecca Reynolds, Susan B. Roberts, Dulani Samaranayakem, Luis B. Sardinha, Analiza M. Silva, Anders M. Sjödin, Marina Stamatiou, Eric Stice, Samuel S. Urlacher, Ludo M. Van Etten, Edgar G. A. H. van Mil, George Wilson, Jack A. Yanovski, Tsukasa Yoshida, Xueying Zhang, Alexia J. Murphy-Alford, Srishti Sinha, Cornelia U. Loechl, Amy H. Luke, Herman Pontzer, Jennifer Rood, Hiroyuki Sagayama, Dale A. Schoeller, Klaas R. Westerterp, William W. Wong, John R. Speakman","doi":"10.1038/s43016-024-01089-5","DOIUrl":null,"url":null,"abstract":"Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years. The resultant regression equation predicts expected TEE from easily acquired variables, such as body weight, age and sex, with 95% predictive limits that can be used to screen for misreporting by participants in dietary studies. We applied the equation to two large datasets (National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) and found that the level of misreporting was >50%. The macronutrient composition from dietary reports in these studies was systematically biased as the level of misreporting increased, leading to potentially spurious associations between diet components and body mass index. This study presents a predictive equation for total energy expenditure derived from doubly labelled water measurements. Applying this equation to two large datasets (the National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) shows that the misreporting of total energy intake is greater than 50%, with important implications for macronutrient availability.","PeriodicalId":94151,"journal":{"name":"Nature food","volume":"6 1","pages":"58-71"},"PeriodicalIF":23.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43016-024-01089-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Predictive equation derived from 6,497 doubly labelled water measurements enables the detection of erroneous self-reported energy intake\",\"authors\":\"Rania Bajunaid, Chaoqun Niu, Catherine Hambly, Zongfang Liu, Yosuke Yamada, Heliodoro Aleman-Mateo, Liam J. Anderson, Lenore Arab, Issad Baddou, Linda Bandini, Kweku Bedu-Addo, Ellen E. Blaak, Carlijn V. C. Bouten, Soren Brage, Maciej S. Buchowski, Nancy F. Butte, Stefan G. J. A. Camps, Regina Casper, Graeme L. Close, Jamie A. Cooper, Richard Cooper, Sai Krupa Das, Peter S. W. Davies, Prasangi Dabare, Lara R. Dugas, Simon Eaton, Ulf Ekelund, Sonja Entringer, Terrence Forrester, Barry W. Fudge, Melanie Gillingham, Annelies H. Goris, Michael Gurven, Asmaa El Hamdouchi, Hinke H. Haisma, Daniel Hoffman, Marije B. Hoos, Sumei Hu, Noorjehan Joonas, Annemiek M. Joosen, Peter Katzmarzyk, Misaka Kimura, William E. Kraus, Wantanee Kriengsinyos, Rebecca Kuriyan, Robert F. Kushner, Estelle V. Lambert, Pulani Lanerolle, Christel L. Larsson, William R. Leonard, Nader Lessan, Marie Löf, Corby K. Martin, Eric Matsiko, Anine C. Medin, James C. Morehen, James P. Morton, Aviva Must, Marian L. Neuhouser, Theresa A. Nicklas, Christine D. Nyström, Robert M. Ojiambo, Kirsi H. Pietiläinen, Yannis P. Pitsiladis, Jacob Plange-Rhule, Guy Plasqui, Ross L. Prentice, Susan B. Racette, David A. Raichlen, Eric Ravussin, Leanne M. Redman, John J. Reilly, Rebecca Reynolds, Susan B. Roberts, Dulani Samaranayakem, Luis B. Sardinha, Analiza M. Silva, Anders M. Sjödin, Marina Stamatiou, Eric Stice, Samuel S. Urlacher, Ludo M. Van Etten, Edgar G. A. H. van Mil, George Wilson, Jack A. Yanovski, Tsukasa Yoshida, Xueying Zhang, Alexia J. Murphy-Alford, Srishti Sinha, Cornelia U. Loechl, Amy H. Luke, Herman Pontzer, Jennifer Rood, Hiroyuki Sagayama, Dale A. Schoeller, Klaas R. Westerterp, William W. Wong, John R. Speakman\",\"doi\":\"10.1038/s43016-024-01089-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years. The resultant regression equation predicts expected TEE from easily acquired variables, such as body weight, age and sex, with 95% predictive limits that can be used to screen for misreporting by participants in dietary studies. We applied the equation to two large datasets (National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) and found that the level of misreporting was >50%. The macronutrient composition from dietary reports in these studies was systematically biased as the level of misreporting increased, leading to potentially spurious associations between diet components and body mass index. This study presents a predictive equation for total energy expenditure derived from doubly labelled water measurements. Applying this equation to two large datasets (the National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) shows that the misreporting of total energy intake is greater than 50%, with important implications for macronutrient availability.\",\"PeriodicalId\":94151,\"journal\":{\"name\":\"Nature food\",\"volume\":\"6 1\",\"pages\":\"58-71\"},\"PeriodicalIF\":23.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43016-024-01089-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43016-024-01089-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature food","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43016-024-01089-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Predictive equation derived from 6,497 doubly labelled water measurements enables the detection of erroneous self-reported energy intake
Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years. The resultant regression equation predicts expected TEE from easily acquired variables, such as body weight, age and sex, with 95% predictive limits that can be used to screen for misreporting by participants in dietary studies. We applied the equation to two large datasets (National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) and found that the level of misreporting was >50%. The macronutrient composition from dietary reports in these studies was systematically biased as the level of misreporting increased, leading to potentially spurious associations between diet components and body mass index. This study presents a predictive equation for total energy expenditure derived from doubly labelled water measurements. Applying this equation to two large datasets (the National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) shows that the misreporting of total energy intake is greater than 50%, with important implications for macronutrient availability.