{"title":"实证管理研究中控制变量的选择:因果图如何为决策提供信息","authors":"Paul Hünermund , Beyers Louw , Mikko Rönkkö","doi":"10.1016/j.leaqua.2024.101845","DOIUrl":null,"url":null,"abstract":"<div><div>The Leadership Quarterly and the management community more broadly prioritize identifying causal relationships to inform effective leadership practices. Despite the availability of more refined causal identification strategies, such as instrumental variables or natural experiments, control variables remain a common strategy in leadership research. The current literature generally agrees that control variables should be chosen based on theory and that these choices should be reported transparently. However, the literature provides little guidance on how specifically potential controls can be identified, how many control variables should be used, and whether a potential control variable should be included. Consequently, the current empirical literature is not fully transparent on how controls are selected and may be contaminated with bad controls that compromise causal inference. Causal diagrams provide a transparent framework to address these issues. This article introduces causal diagrams for leadership and management researchers and presents a workflow for finding an appropriate set of control variables.</div></div>","PeriodicalId":48434,"journal":{"name":"Leadership Quarterly","volume":"36 2","pages":"Article 101845"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The choice of control variables in empirical management research: How causal diagrams can inform the decision\",\"authors\":\"Paul Hünermund , Beyers Louw , Mikko Rönkkö\",\"doi\":\"10.1016/j.leaqua.2024.101845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Leadership Quarterly and the management community more broadly prioritize identifying causal relationships to inform effective leadership practices. Despite the availability of more refined causal identification strategies, such as instrumental variables or natural experiments, control variables remain a common strategy in leadership research. The current literature generally agrees that control variables should be chosen based on theory and that these choices should be reported transparently. However, the literature provides little guidance on how specifically potential controls can be identified, how many control variables should be used, and whether a potential control variable should be included. Consequently, the current empirical literature is not fully transparent on how controls are selected and may be contaminated with bad controls that compromise causal inference. Causal diagrams provide a transparent framework to address these issues. This article introduces causal diagrams for leadership and management researchers and presents a workflow for finding an appropriate set of control variables.</div></div>\",\"PeriodicalId\":48434,\"journal\":{\"name\":\"Leadership Quarterly\",\"volume\":\"36 2\",\"pages\":\"Article 101845\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leadership Quarterly\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1048984324000742\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leadership Quarterly","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1048984324000742","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
The choice of control variables in empirical management research: How causal diagrams can inform the decision
The Leadership Quarterly and the management community more broadly prioritize identifying causal relationships to inform effective leadership practices. Despite the availability of more refined causal identification strategies, such as instrumental variables or natural experiments, control variables remain a common strategy in leadership research. The current literature generally agrees that control variables should be chosen based on theory and that these choices should be reported transparently. However, the literature provides little guidance on how specifically potential controls can be identified, how many control variables should be used, and whether a potential control variable should be included. Consequently, the current empirical literature is not fully transparent on how controls are selected and may be contaminated with bad controls that compromise causal inference. Causal diagrams provide a transparent framework to address these issues. This article introduces causal diagrams for leadership and management researchers and presents a workflow for finding an appropriate set of control variables.
期刊介绍:
The Leadership Quarterly is a social-science journal dedicated to advancing our understanding of leadership as a phenomenon, how to study it, as well as its practical implications.
Leadership Quarterly seeks contributions from various disciplinary perspectives, including psychology broadly defined (i.e., industrial-organizational, social, evolutionary, biological, differential), management (i.e., organizational behavior, strategy, organizational theory), political science, sociology, economics (i.e., personnel, behavioral, labor), anthropology, history, and methodology.Equally desirable are contributions from multidisciplinary perspectives.