{"title":"植物多酚氧化酶研究进展述评。","authors":"Hui Zou, Qian Xiao, Guoce Li, Xiaoyu Wei, Xiaocheng Tian, Lingcheng Zhu, Fengwang Ma, Mingjun Li","doi":"10.1016/j.scienta.2025.113960","DOIUrl":null,"url":null,"abstract":"Polyphenol oxidase (PPO), a copper-containing enzyme encoded by nuclear genes, is widely found in plants, animals, fungi, and bacteria. In the presence of oxygen, PPO catalyzes the oxidation of phenolic compounds in plants, leading to the formation of quinones that subsequently polymerize to produce melanin. This process ultimately results in enzymatic browning, which adversely affects the organoleptic quality and nutritional value of fruits and vegetables. To achieve a comprehensive and systematic understanding of PPOs, this paper reviews various aspects of PPO, concluding its protein structure, physicochemical properties, physiological functions (such as stress response mechanisms), the correlation between PPO activity and enzymatic browning, as well as strategies to alleviate browning by inhibiting PPO activity. Additionally, we discuss strategies to enhance PPO activity to help plants in coping with unfavorable growth conditions. Furthermore, we provide insights into future research directions for PPO. In conclusion, this comprehensive summary of the biological functions of PPO aims to establish a theoretical foundation for future plant research on plant stress tolerance and fruit quality.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"128 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the advancements in plant polyphenol oxidases research.\",\"authors\":\"Hui Zou, Qian Xiao, Guoce Li, Xiaoyu Wei, Xiaocheng Tian, Lingcheng Zhu, Fengwang Ma, Mingjun Li\",\"doi\":\"10.1016/j.scienta.2025.113960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyphenol oxidase (PPO), a copper-containing enzyme encoded by nuclear genes, is widely found in plants, animals, fungi, and bacteria. In the presence of oxygen, PPO catalyzes the oxidation of phenolic compounds in plants, leading to the formation of quinones that subsequently polymerize to produce melanin. This process ultimately results in enzymatic browning, which adversely affects the organoleptic quality and nutritional value of fruits and vegetables. To achieve a comprehensive and systematic understanding of PPOs, this paper reviews various aspects of PPO, concluding its protein structure, physicochemical properties, physiological functions (such as stress response mechanisms), the correlation between PPO activity and enzymatic browning, as well as strategies to alleviate browning by inhibiting PPO activity. Additionally, we discuss strategies to enhance PPO activity to help plants in coping with unfavorable growth conditions. Furthermore, we provide insights into future research directions for PPO. In conclusion, this comprehensive summary of the biological functions of PPO aims to establish a theoretical foundation for future plant research on plant stress tolerance and fruit quality.\",\"PeriodicalId\":21679,\"journal\":{\"name\":\"Scientia Horticulturae\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scienta.2025.113960\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.scienta.2025.113960","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Revisiting the advancements in plant polyphenol oxidases research.
Polyphenol oxidase (PPO), a copper-containing enzyme encoded by nuclear genes, is widely found in plants, animals, fungi, and bacteria. In the presence of oxygen, PPO catalyzes the oxidation of phenolic compounds in plants, leading to the formation of quinones that subsequently polymerize to produce melanin. This process ultimately results in enzymatic browning, which adversely affects the organoleptic quality and nutritional value of fruits and vegetables. To achieve a comprehensive and systematic understanding of PPOs, this paper reviews various aspects of PPO, concluding its protein structure, physicochemical properties, physiological functions (such as stress response mechanisms), the correlation between PPO activity and enzymatic browning, as well as strategies to alleviate browning by inhibiting PPO activity. Additionally, we discuss strategies to enhance PPO activity to help plants in coping with unfavorable growth conditions. Furthermore, we provide insights into future research directions for PPO. In conclusion, this comprehensive summary of the biological functions of PPO aims to establish a theoretical foundation for future plant research on plant stress tolerance and fruit quality.
期刊介绍:
Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.