{"title":"具有高度自由度的可编程柔性压电致动器阵列。","authors":"Hong Ding, Dengfei Yang, Shuo Ding, Fangyi Ma","doi":"10.1089/soro.2024.0099","DOIUrl":null,"url":null,"abstract":"<p><p>The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing. However, most existing methods are predetermined through the fabrication process and cannot reprogram their shape, facing limitations on multifunction. Besides, the achievable geometries are very limited due to the device's low integrated level of actuator elements. Here, we develop a polyvinylidene fluoride flexible piezoelectric actuator array based on a row/column addressing (RCA) scheme for reprogrammable high DoF shape morphing and locomotion. The specially designed row/column electrodes form a 6 × 6 array, which contains 36 actuator elements. By developing a high-voltage RCA control system, we can individually control all the elements in the array, leading to a highly reprogrammable array with various sophisticated high DoF shape morphing. We also demonstrate that the array is capable of propelling a robotic fish with various locomotions. This research provides a new method and approach for biomimetic robotics with better mimicry, aero/hydrodynamic efficiency, and maneuverability, as well as haptic display and object manipulation.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion.\",\"authors\":\"Hong Ding, Dengfei Yang, Shuo Ding, Fangyi Ma\",\"doi\":\"10.1089/soro.2024.0099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing. However, most existing methods are predetermined through the fabrication process and cannot reprogram their shape, facing limitations on multifunction. Besides, the achievable geometries are very limited due to the device's low integrated level of actuator elements. Here, we develop a polyvinylidene fluoride flexible piezoelectric actuator array based on a row/column addressing (RCA) scheme for reprogrammable high DoF shape morphing and locomotion. The specially designed row/column electrodes form a 6 × 6 array, which contains 36 actuator elements. By developing a high-voltage RCA control system, we can individually control all the elements in the array, leading to a highly reprogrammable array with various sophisticated high DoF shape morphing. We also demonstrate that the array is capable of propelling a robotic fish with various locomotions. This research provides a new method and approach for biomimetic robotics with better mimicry, aero/hydrodynamic efficiency, and maneuverability, as well as haptic display and object manipulation.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2024.0099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion.
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing. However, most existing methods are predetermined through the fabrication process and cannot reprogram their shape, facing limitations on multifunction. Besides, the achievable geometries are very limited due to the device's low integrated level of actuator elements. Here, we develop a polyvinylidene fluoride flexible piezoelectric actuator array based on a row/column addressing (RCA) scheme for reprogrammable high DoF shape morphing and locomotion. The specially designed row/column electrodes form a 6 × 6 array, which contains 36 actuator elements. By developing a high-voltage RCA control system, we can individually control all the elements in the array, leading to a highly reprogrammable array with various sophisticated high DoF shape morphing. We also demonstrate that the array is capable of propelling a robotic fish with various locomotions. This research provides a new method and approach for biomimetic robotics with better mimicry, aero/hydrodynamic efficiency, and maneuverability, as well as haptic display and object manipulation.