具有高度自由度的可编程柔性压电致动器阵列。

Hong Ding, Dengfei Yang, Shuo Ding, Fangyi Ma
{"title":"具有高度自由度的可编程柔性压电致动器阵列。","authors":"Hong Ding, Dengfei Yang, Shuo Ding, Fangyi Ma","doi":"10.1089/soro.2024.0099","DOIUrl":null,"url":null,"abstract":"<p><p>The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing. However, most existing methods are predetermined through the fabrication process and cannot reprogram their shape, facing limitations on multifunction. Besides, the achievable geometries are very limited due to the device's low integrated level of actuator elements. Here, we develop a polyvinylidene fluoride flexible piezoelectric actuator array based on a row/column addressing (RCA) scheme for reprogrammable high DoF shape morphing and locomotion. The specially designed row/column electrodes form a 6 × 6 array, which contains 36 actuator elements. By developing a high-voltage RCA control system, we can individually control all the elements in the array, leading to a highly reprogrammable array with various sophisticated high DoF shape morphing. We also demonstrate that the array is capable of propelling a robotic fish with various locomotions. This research provides a new method and approach for biomimetic robotics with better mimicry, aero/hydrodynamic efficiency, and maneuverability, as well as haptic display and object manipulation.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion.\",\"authors\":\"Hong Ding, Dengfei Yang, Shuo Ding, Fangyi Ma\",\"doi\":\"10.1089/soro.2024.0099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing. However, most existing methods are predetermined through the fabrication process and cannot reprogram their shape, facing limitations on multifunction. Besides, the achievable geometries are very limited due to the device's low integrated level of actuator elements. Here, we develop a polyvinylidene fluoride flexible piezoelectric actuator array based on a row/column addressing (RCA) scheme for reprogrammable high DoF shape morphing and locomotion. The specially designed row/column electrodes form a 6 × 6 array, which contains 36 actuator elements. By developing a high-voltage RCA control system, we can individually control all the elements in the array, leading to a highly reprogrammable array with various sophisticated high DoF shape morphing. We also demonstrate that the array is capable of propelling a robotic fish with various locomotions. This research provides a new method and approach for biomimetic robotics with better mimicry, aero/hydrodynamic efficiency, and maneuverability, as well as haptic display and object manipulation.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2024.0099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高度自由度形状变形在生物学中广泛存在于模仿、伪装和运动中。目前,为了实现整合、抓取和运动等功能,已经开发出了许多具有变形功能的仿生软/柔性执行器和机器人。在这些解决方案中,二维响应材料和结构可以形成不同的三维构型,对于创建可逆的高自由度形状变形是有价值的。然而,现有的大多数方法都是通过制造过程预先确定的,无法对其形状进行重新编程,面临着多功能的限制。此外,由于器件的执行元件集成度较低,可实现的几何形状非常有限。在这里,我们开发了一种基于行/列寻址(RCA)方案的聚偏氟乙烯柔性压电驱动器阵列,用于可编程的高自由度形状变形和运动。特别设计的行/列电极形成6 × 6阵列,其中包含36个致动元件。通过开发高压RCA控制系统,我们可以单独控制阵列中的所有元件,从而形成具有各种复杂高自由度形状变形的高度可重新编程阵列。我们还证明了该阵列能够推动机器鱼进行各种运动。该研究为仿生机器人提供了一种新的方法和途径,具有更好的拟态性、气动/水动力效率和机动性,以及触觉显示和物体操纵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion.

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing. However, most existing methods are predetermined through the fabrication process and cannot reprogram their shape, facing limitations on multifunction. Besides, the achievable geometries are very limited due to the device's low integrated level of actuator elements. Here, we develop a polyvinylidene fluoride flexible piezoelectric actuator array based on a row/column addressing (RCA) scheme for reprogrammable high DoF shape morphing and locomotion. The specially designed row/column electrodes form a 6 × 6 array, which contains 36 actuator elements. By developing a high-voltage RCA control system, we can individually control all the elements in the array, leading to a highly reprogrammable array with various sophisticated high DoF shape morphing. We also demonstrate that the array is capable of propelling a robotic fish with various locomotions. This research provides a new method and approach for biomimetic robotics with better mimicry, aero/hydrodynamic efficiency, and maneuverability, as well as haptic display and object manipulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信