Nicola Benvenuto, Stefano Di Bella, Luigi Principe, Diego Luppino, Jacopo Conti, Venera Costantino, Manuela Di Santolo, Marina Busetti, Roberto Luzzati, Verena Zerbato
{"title":"除滑液以外的样品的BioFire®关节感染面板。","authors":"Nicola Benvenuto, Stefano Di Bella, Luigi Principe, Diego Luppino, Jacopo Conti, Venera Costantino, Manuela Di Santolo, Marina Busetti, Roberto Luzzati, Verena Zerbato","doi":"10.3390/antibiotics13121198","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b>: The early identification of infection-causing microorganisms through multiplex PCR panels enables prompt and targeted antibiotic therapy. This study aimed to assess the performance of the BioFire<sup>®</sup> Joint Infection Panel (BF-JIP) in analysing non-synovial fluid samples. <b>Methods</b>: We conducted a retrospective cohort study at Trieste University Hospital, Italy, on hospitalised adults with non-synovial fluid samples tested by both BF-JIP and traditional culture methods (November 2022-April 2024). <b>Results</b>: We evaluated 48 samples from 45 patients, including 24 abscess drainage fluids and 10 tissue samples. The BF-JIP showed high concordance (85.4%) and enhanced detection (4.3%) compared to culture methods. The BF-JIP excelled in cerebrospinal fluid (CSF) (100% accuracy and concordance) and in abscess drainage fluid (accuracy: 95.8%; concordance: 91.7%) identification and maintained high performance rates in patients under antibiotics. <b>Conclusions</b>: These findings suggest that BF-JIP is a valuable tool for accurate pathogen detection in various clinical samples, offering the additional advantage of being a rapid method.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"13 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672807/pdf/","citationCount":"0","resultStr":"{\"title\":\"BioFire<sup>®</sup> Joint Infection Panel for Samples Other than Synovial Fluid.\",\"authors\":\"Nicola Benvenuto, Stefano Di Bella, Luigi Principe, Diego Luppino, Jacopo Conti, Venera Costantino, Manuela Di Santolo, Marina Busetti, Roberto Luzzati, Verena Zerbato\",\"doi\":\"10.3390/antibiotics13121198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objectives</b>: The early identification of infection-causing microorganisms through multiplex PCR panels enables prompt and targeted antibiotic therapy. This study aimed to assess the performance of the BioFire<sup>®</sup> Joint Infection Panel (BF-JIP) in analysing non-synovial fluid samples. <b>Methods</b>: We conducted a retrospective cohort study at Trieste University Hospital, Italy, on hospitalised adults with non-synovial fluid samples tested by both BF-JIP and traditional culture methods (November 2022-April 2024). <b>Results</b>: We evaluated 48 samples from 45 patients, including 24 abscess drainage fluids and 10 tissue samples. The BF-JIP showed high concordance (85.4%) and enhanced detection (4.3%) compared to culture methods. The BF-JIP excelled in cerebrospinal fluid (CSF) (100% accuracy and concordance) and in abscess drainage fluid (accuracy: 95.8%; concordance: 91.7%) identification and maintained high performance rates in patients under antibiotics. <b>Conclusions</b>: These findings suggest that BF-JIP is a valuable tool for accurate pathogen detection in various clinical samples, offering the additional advantage of being a rapid method.</p>\",\"PeriodicalId\":54246,\"journal\":{\"name\":\"Antibiotics-Basel\",\"volume\":\"13 12\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672807/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibiotics-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antibiotics13121198\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics13121198","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
BioFire® Joint Infection Panel for Samples Other than Synovial Fluid.
Objectives: The early identification of infection-causing microorganisms through multiplex PCR panels enables prompt and targeted antibiotic therapy. This study aimed to assess the performance of the BioFire® Joint Infection Panel (BF-JIP) in analysing non-synovial fluid samples. Methods: We conducted a retrospective cohort study at Trieste University Hospital, Italy, on hospitalised adults with non-synovial fluid samples tested by both BF-JIP and traditional culture methods (November 2022-April 2024). Results: We evaluated 48 samples from 45 patients, including 24 abscess drainage fluids and 10 tissue samples. The BF-JIP showed high concordance (85.4%) and enhanced detection (4.3%) compared to culture methods. The BF-JIP excelled in cerebrospinal fluid (CSF) (100% accuracy and concordance) and in abscess drainage fluid (accuracy: 95.8%; concordance: 91.7%) identification and maintained high performance rates in patients under antibiotics. Conclusions: These findings suggest that BF-JIP is a valuable tool for accurate pathogen detection in various clinical samples, offering the additional advantage of being a rapid method.
Antibiotics-BaselPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍:
Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.