Iolanda Rita Infantino , Salvatore Antonio Maria Cubisino , Stefano Conti Nibali , Paola Foti , Marianna Flora Tomasello , Silvia Boninelli , Giuseppe Battiato , Andrea Magrì , Angela Messina , Flora Valeria Romeo , Cinzia Caggia , Vito De Pinto , Simona Reina
{"title":"橄榄厂废水酚提取物维持线粒体生物能量氧化损伤。","authors":"Iolanda Rita Infantino , Salvatore Antonio Maria Cubisino , Stefano Conti Nibali , Paola Foti , Marianna Flora Tomasello , Silvia Boninelli , Giuseppe Battiato , Andrea Magrì , Angela Messina , Flora Valeria Romeo , Cinzia Caggia , Vito De Pinto , Simona Reina","doi":"10.1016/j.fochms.2024.100234","DOIUrl":null,"url":null,"abstract":"<div><div>In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of <em>olive</em> fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.e. C and OPE extracts, respectively) that exhibited considerable anti-microbial and radical-scavenging activities in vitro. Based on these findings, the present study aimed to assess the impact of C and OPE samples on mitochondrial function and oxidative stress response in mouse fibroblast-like cells (NCTC). Accordingly, OMWW phenolic extracts proved to enhance mitochondrial biogenesis and to reduce cellular sensitivity to hydrogen peroxide. Moreover, high-resolution respirometry experiments first time revealed the efficiency of OMWW phenols recovered by selective resin extraction in preventing mitochondrial respiration failure upon oxidative insult. Collected data definitely demonstrate the bioactivity of our phenolic-rich fractions, supporting the advantages of reusing the olive mill wastewater to generate, at low-cost, high added value molecules that could be useful for the improvement of health and nutrition products.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"10 ","pages":"Article 100234"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11713508/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phenolic extract from olive mill wastewater sustains mitochondrial bioenergetics upon oxidative insult\",\"authors\":\"Iolanda Rita Infantino , Salvatore Antonio Maria Cubisino , Stefano Conti Nibali , Paola Foti , Marianna Flora Tomasello , Silvia Boninelli , Giuseppe Battiato , Andrea Magrì , Angela Messina , Flora Valeria Romeo , Cinzia Caggia , Vito De Pinto , Simona Reina\",\"doi\":\"10.1016/j.fochms.2024.100234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of <em>olive</em> fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.e. C and OPE extracts, respectively) that exhibited considerable anti-microbial and radical-scavenging activities in vitro. Based on these findings, the present study aimed to assess the impact of C and OPE samples on mitochondrial function and oxidative stress response in mouse fibroblast-like cells (NCTC). Accordingly, OMWW phenolic extracts proved to enhance mitochondrial biogenesis and to reduce cellular sensitivity to hydrogen peroxide. Moreover, high-resolution respirometry experiments first time revealed the efficiency of OMWW phenols recovered by selective resin extraction in preventing mitochondrial respiration failure upon oxidative insult. Collected data definitely demonstrate the bioactivity of our phenolic-rich fractions, supporting the advantages of reusing the olive mill wastewater to generate, at low-cost, high added value molecules that could be useful for the improvement of health and nutrition products.</div></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":\"10 \",\"pages\":\"Article 100234\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11713508/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666566224000418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566224000418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Phenolic extract from olive mill wastewater sustains mitochondrial bioenergetics upon oxidative insult
In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of olive fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.e. C and OPE extracts, respectively) that exhibited considerable anti-microbial and radical-scavenging activities in vitro. Based on these findings, the present study aimed to assess the impact of C and OPE samples on mitochondrial function and oxidative stress response in mouse fibroblast-like cells (NCTC). Accordingly, OMWW phenolic extracts proved to enhance mitochondrial biogenesis and to reduce cellular sensitivity to hydrogen peroxide. Moreover, high-resolution respirometry experiments first time revealed the efficiency of OMWW phenols recovered by selective resin extraction in preventing mitochondrial respiration failure upon oxidative insult. Collected data definitely demonstrate the bioactivity of our phenolic-rich fractions, supporting the advantages of reusing the olive mill wastewater to generate, at low-cost, high added value molecules that could be useful for the improvement of health and nutrition products.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.