{"title":"dl -正缬氨酸小鼠粪便菌群移植后,高脂肪饮食喂养的C57BL/6小鼠肥胖相关疾病的改善","authors":"Xin Li, Bohan Sun, Yanting Qin, Fangfang Yue, Xin Lü","doi":"10.1002/mnfr.202400577","DOIUrl":null,"url":null,"abstract":"Fecal microbiota transplantation (FMT) could significantly alter the recipient's gut bacteria composition and attenuate obesity and obesity-related metabolic syndromes. DL-norvaline is a nonproteinogenic amino acid and possesses anti-obesity potential. However, the specific mechanisms by which gut microbiota might mediate beneficial effects of DL-norvaline have not been completely elucidated. In this study, DL-norvaline-mediated FMT upregulated the beneficial bacteria (<i>Clostridia_UCG_014</i>, <i>Christensenellales</i>, <i>Bacilli</i>, <i>Ileibacterium</i>, <i>Dubosiella</i>, <i>Lactobacillus</i>, <i>Muribaculaceae</i>, and <i>Bacteroidaceae</i>) and downregulated the harmful bacteria (<i>Tuzzerella</i> and <i>Marinifilaceae</i>), further intestinal inflammation, oxidative stress, and intestinal barrier were alleviated as well as short chain fatty acids levels were increased, thus alleviating glucose and insulin metabolism, improving biochemical indexes and energy metabolism and decreasing body weight gain and tissue weight. However, heat-inactivated FMT did not demonstrate any of those improvements in obese mice. Notably, both DL-norvaline-mediated FMT and heat-inactivated FMT increased <i>Bacteroidaceae</i> and <i>Muribaculaceae</i>, this being a signature of alterations to the gut microbiota marker caused by DL-norvaline. Therefore, the beneficial effects of DL-norvaline were transmissible via FMT. This study highlighted the pivotal involvement of the gut microbiota in the development of obesity and provided a novel insight into the underlying mechanisms of FMT, thereby potentially enhancing the efficacy and refinement of FMT utilization.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"16 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amelioration of Obesity-Related Disorders in High-Fat Diet-Fed C57BL/6 Mice Following Fecal Microbiota Transplantation From DL-Norvaline-Dosed Mice\",\"authors\":\"Xin Li, Bohan Sun, Yanting Qin, Fangfang Yue, Xin Lü\",\"doi\":\"10.1002/mnfr.202400577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fecal microbiota transplantation (FMT) could significantly alter the recipient's gut bacteria composition and attenuate obesity and obesity-related metabolic syndromes. DL-norvaline is a nonproteinogenic amino acid and possesses anti-obesity potential. However, the specific mechanisms by which gut microbiota might mediate beneficial effects of DL-norvaline have not been completely elucidated. In this study, DL-norvaline-mediated FMT upregulated the beneficial bacteria (<i>Clostridia_UCG_014</i>, <i>Christensenellales</i>, <i>Bacilli</i>, <i>Ileibacterium</i>, <i>Dubosiella</i>, <i>Lactobacillus</i>, <i>Muribaculaceae</i>, and <i>Bacteroidaceae</i>) and downregulated the harmful bacteria (<i>Tuzzerella</i> and <i>Marinifilaceae</i>), further intestinal inflammation, oxidative stress, and intestinal barrier were alleviated as well as short chain fatty acids levels were increased, thus alleviating glucose and insulin metabolism, improving biochemical indexes and energy metabolism and decreasing body weight gain and tissue weight. However, heat-inactivated FMT did not demonstrate any of those improvements in obese mice. Notably, both DL-norvaline-mediated FMT and heat-inactivated FMT increased <i>Bacteroidaceae</i> and <i>Muribaculaceae</i>, this being a signature of alterations to the gut microbiota marker caused by DL-norvaline. Therefore, the beneficial effects of DL-norvaline were transmissible via FMT. This study highlighted the pivotal involvement of the gut microbiota in the development of obesity and provided a novel insight into the underlying mechanisms of FMT, thereby potentially enhancing the efficacy and refinement of FMT utilization.\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/mnfr.202400577\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.202400577","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Amelioration of Obesity-Related Disorders in High-Fat Diet-Fed C57BL/6 Mice Following Fecal Microbiota Transplantation From DL-Norvaline-Dosed Mice
Fecal microbiota transplantation (FMT) could significantly alter the recipient's gut bacteria composition and attenuate obesity and obesity-related metabolic syndromes. DL-norvaline is a nonproteinogenic amino acid and possesses anti-obesity potential. However, the specific mechanisms by which gut microbiota might mediate beneficial effects of DL-norvaline have not been completely elucidated. In this study, DL-norvaline-mediated FMT upregulated the beneficial bacteria (Clostridia_UCG_014, Christensenellales, Bacilli, Ileibacterium, Dubosiella, Lactobacillus, Muribaculaceae, and Bacteroidaceae) and downregulated the harmful bacteria (Tuzzerella and Marinifilaceae), further intestinal inflammation, oxidative stress, and intestinal barrier were alleviated as well as short chain fatty acids levels were increased, thus alleviating glucose and insulin metabolism, improving biochemical indexes and energy metabolism and decreasing body weight gain and tissue weight. However, heat-inactivated FMT did not demonstrate any of those improvements in obese mice. Notably, both DL-norvaline-mediated FMT and heat-inactivated FMT increased Bacteroidaceae and Muribaculaceae, this being a signature of alterations to the gut microbiota marker caused by DL-norvaline. Therefore, the beneficial effects of DL-norvaline were transmissible via FMT. This study highlighted the pivotal involvement of the gut microbiota in the development of obesity and provided a novel insight into the underlying mechanisms of FMT, thereby potentially enhancing the efficacy and refinement of FMT utilization.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.