Jianyou Gao, Jiewei Li, Cuixia Liu, Hongjuan Gong, Beibei Qi, Rongxiang Zhu, Liming Xia, Li Li, Shibiao Liu, Qiaosheng Jiang, Kaiyu Ye, Faming Wang
{"title":"三氯异氰尿酸在猕猴桃细菌性溃疡病防治中的应用表明其作为一种环保型杀菌剂具有广阔的应用前景","authors":"Jianyou Gao, Jiewei Li, Cuixia Liu, Hongjuan Gong, Beibei Qi, Rongxiang Zhu, Liming Xia, Li Li, Shibiao Liu, Qiaosheng Jiang, Kaiyu Ye, Faming Wang","doi":"10.1186/s40538-024-00724-4","DOIUrl":null,"url":null,"abstract":"<div><p>The growing concerns over food safety have intensified calls for alternatives to toxic pesticides in agriculture. Despite these concerns, the global agricultural industry remains heavily reliant on chemical pesticides to maintain crop yields. However, the overuse of these chemicals has resulted in significant biodiversity loss and environmental degradation, highlighting the urgent need for safer, non-toxic, and sustainable alternatives. Trichloroisocyanuric acid (TCCA), a cost-effective and relatively safe industrial oxidant commonly used for disinfection, has shown potential for plant disease management. However, its application in this context remains largely unexplored. In this study, we evaluate the efficacy of TCCA in controlling <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (Psa), the causative agent of bacterial canker in kiwifruit, and explore its underlying mechanisms of action. Our results demonstrate that TCCA effectively inhibits Psa growth in vitro, even at low concentrations, with minimum inhibitory concentrations (MICs) of 20 mg/L (TCCA added directly to the Psa suspension) and 100 mg/L (Psa cells mixed with liquid LB medium before adding TCC). In vivo, TCCA treatment at a concentration of 500 mg/L substantially reduced Psa colonization on both kiwifruit leaves and canes, outperforming conventional bactericides such as copper hydroxide, chlorothalonil, and ethylicin, as well as alternative treatments like pyraclostrobin-dysonline and Xinjunan acetate. Mechanistic investigations revealed that TCCA inhibited bacterial biofilm formation, impaired motility, disrupted cell integrity, and suppressed the expression of virulence-related genes, ultimately leading to bacterial cell death. Additionally, TCCA treatment of both healthy and infected canes induced the activity of key defense-related enzymes, including catalase (CAT), peroxidase (POD), glutathione reductase (GR), and phenylalanine ammonia-lyase (PAL), suggesting that TCCA may activate systemic plant defense responses. These findings position TCCA as a promising, environmentally friendly alternative to traditional toxic bactericides, offering a sustainable and effective solution for plant disease management with reduced ecological risks.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00724-4","citationCount":"0","resultStr":"{\"title\":\"Application of trichloroisocyanuric acid in controlling kiwifruit bacterial canker disease demonstrates its promising potential as an eco-friendly bactericide\",\"authors\":\"Jianyou Gao, Jiewei Li, Cuixia Liu, Hongjuan Gong, Beibei Qi, Rongxiang Zhu, Liming Xia, Li Li, Shibiao Liu, Qiaosheng Jiang, Kaiyu Ye, Faming Wang\",\"doi\":\"10.1186/s40538-024-00724-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing concerns over food safety have intensified calls for alternatives to toxic pesticides in agriculture. Despite these concerns, the global agricultural industry remains heavily reliant on chemical pesticides to maintain crop yields. However, the overuse of these chemicals has resulted in significant biodiversity loss and environmental degradation, highlighting the urgent need for safer, non-toxic, and sustainable alternatives. Trichloroisocyanuric acid (TCCA), a cost-effective and relatively safe industrial oxidant commonly used for disinfection, has shown potential for plant disease management. However, its application in this context remains largely unexplored. In this study, we evaluate the efficacy of TCCA in controlling <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (Psa), the causative agent of bacterial canker in kiwifruit, and explore its underlying mechanisms of action. Our results demonstrate that TCCA effectively inhibits Psa growth in vitro, even at low concentrations, with minimum inhibitory concentrations (MICs) of 20 mg/L (TCCA added directly to the Psa suspension) and 100 mg/L (Psa cells mixed with liquid LB medium before adding TCC). In vivo, TCCA treatment at a concentration of 500 mg/L substantially reduced Psa colonization on both kiwifruit leaves and canes, outperforming conventional bactericides such as copper hydroxide, chlorothalonil, and ethylicin, as well as alternative treatments like pyraclostrobin-dysonline and Xinjunan acetate. Mechanistic investigations revealed that TCCA inhibited bacterial biofilm formation, impaired motility, disrupted cell integrity, and suppressed the expression of virulence-related genes, ultimately leading to bacterial cell death. Additionally, TCCA treatment of both healthy and infected canes induced the activity of key defense-related enzymes, including catalase (CAT), peroxidase (POD), glutathione reductase (GR), and phenylalanine ammonia-lyase (PAL), suggesting that TCCA may activate systemic plant defense responses. These findings position TCCA as a promising, environmentally friendly alternative to traditional toxic bactericides, offering a sustainable and effective solution for plant disease management with reduced ecological risks.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00724-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-024-00724-4\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00724-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of trichloroisocyanuric acid in controlling kiwifruit bacterial canker disease demonstrates its promising potential as an eco-friendly bactericide
The growing concerns over food safety have intensified calls for alternatives to toxic pesticides in agriculture. Despite these concerns, the global agricultural industry remains heavily reliant on chemical pesticides to maintain crop yields. However, the overuse of these chemicals has resulted in significant biodiversity loss and environmental degradation, highlighting the urgent need for safer, non-toxic, and sustainable alternatives. Trichloroisocyanuric acid (TCCA), a cost-effective and relatively safe industrial oxidant commonly used for disinfection, has shown potential for plant disease management. However, its application in this context remains largely unexplored. In this study, we evaluate the efficacy of TCCA in controlling Pseudomonas syringae pv. actinidiae (Psa), the causative agent of bacterial canker in kiwifruit, and explore its underlying mechanisms of action. Our results demonstrate that TCCA effectively inhibits Psa growth in vitro, even at low concentrations, with minimum inhibitory concentrations (MICs) of 20 mg/L (TCCA added directly to the Psa suspension) and 100 mg/L (Psa cells mixed with liquid LB medium before adding TCC). In vivo, TCCA treatment at a concentration of 500 mg/L substantially reduced Psa colonization on both kiwifruit leaves and canes, outperforming conventional bactericides such as copper hydroxide, chlorothalonil, and ethylicin, as well as alternative treatments like pyraclostrobin-dysonline and Xinjunan acetate. Mechanistic investigations revealed that TCCA inhibited bacterial biofilm formation, impaired motility, disrupted cell integrity, and suppressed the expression of virulence-related genes, ultimately leading to bacterial cell death. Additionally, TCCA treatment of both healthy and infected canes induced the activity of key defense-related enzymes, including catalase (CAT), peroxidase (POD), glutathione reductase (GR), and phenylalanine ammonia-lyase (PAL), suggesting that TCCA may activate systemic plant defense responses. These findings position TCCA as a promising, environmentally friendly alternative to traditional toxic bactericides, offering a sustainable and effective solution for plant disease management with reduced ecological risks.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.