Bingyu Li, Huan Su, Shuaibin Wang, Junping Gao, Zhong Wang, Jun Yang, Xin Xu
{"title":"蔗糖磷酸合酶(SPS)基因家族的鉴定揭示了NtSPS5和NtSPS6在烟草抗旱性中的积极作用","authors":"Bingyu Li, Huan Su, Shuaibin Wang, Junping Gao, Zhong Wang, Jun Yang, Xin Xu","doi":"10.1186/s40538-024-00727-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Sucrose phosphate synthase (SPS) is an important enzyme in the sucrose synthesis of plants, governing the accumulation and distribution of photosynthetic assimilates, which is essential for plant growth and stress tolerance.</p><h3>Results</h3><p>This study successfully identified eight <i>NtSPS</i> genes within the genome of cultivated tobacco. Phylogenetic analysis revealed that these genes are categorized into three subfamilies, a classification supported by the examination of their gene structures and conserved domains. The promoters of the <i>NtSPSs</i> contained a variety of cis-elements associated with plant development, responses to phytohormones, and stress resistance. Expression profiling demonstrated that <i>NtSPS</i> genes exhibit distinct expression patterns across different tissues and under various stress conditions. Notably, the majority of <i>NtSPS</i> genes, especially <i>NtSPS5</i> and <i>NtSPS6</i>, showed high expression in leaves and increased expression in both roots and leaves following drought treatment. Furthermore, overexpression of <i>NtSPS5</i> and <i>NtSPS6</i> in tobacco plants significantly improved the germination rate under mannitol treatment and enhanced the activity of antioxidant enzymes along with chlorophyll fluorescence parameters under drought stress. These results suggest that <i>NtSPS5</i> and <i>NtSPS6</i> have a positive impact on drought stress tolerance in tobacco plants.</p><h3>Conclusions</h3><p>Therefore, this study provides the significant target in drought resistance breeding and lays the foundation for further investigation into the function and regulatory mechanisms of <i>SPS</i> genes.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00727-1","citationCount":"0","resultStr":"{\"title\":\"Identification of the sucrose phosphate synthase (SPS) gene family reveals the positive role of NtSPS5 and NtSPS6 in drought stress tolerance of tobacco\",\"authors\":\"Bingyu Li, Huan Su, Shuaibin Wang, Junping Gao, Zhong Wang, Jun Yang, Xin Xu\",\"doi\":\"10.1186/s40538-024-00727-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Sucrose phosphate synthase (SPS) is an important enzyme in the sucrose synthesis of plants, governing the accumulation and distribution of photosynthetic assimilates, which is essential for plant growth and stress tolerance.</p><h3>Results</h3><p>This study successfully identified eight <i>NtSPS</i> genes within the genome of cultivated tobacco. Phylogenetic analysis revealed that these genes are categorized into three subfamilies, a classification supported by the examination of their gene structures and conserved domains. The promoters of the <i>NtSPSs</i> contained a variety of cis-elements associated with plant development, responses to phytohormones, and stress resistance. Expression profiling demonstrated that <i>NtSPS</i> genes exhibit distinct expression patterns across different tissues and under various stress conditions. Notably, the majority of <i>NtSPS</i> genes, especially <i>NtSPS5</i> and <i>NtSPS6</i>, showed high expression in leaves and increased expression in both roots and leaves following drought treatment. Furthermore, overexpression of <i>NtSPS5</i> and <i>NtSPS6</i> in tobacco plants significantly improved the germination rate under mannitol treatment and enhanced the activity of antioxidant enzymes along with chlorophyll fluorescence parameters under drought stress. These results suggest that <i>NtSPS5</i> and <i>NtSPS6</i> have a positive impact on drought stress tolerance in tobacco plants.</p><h3>Conclusions</h3><p>Therefore, this study provides the significant target in drought resistance breeding and lays the foundation for further investigation into the function and regulatory mechanisms of <i>SPS</i> genes.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00727-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-024-00727-1\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00727-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification of the sucrose phosphate synthase (SPS) gene family reveals the positive role of NtSPS5 and NtSPS6 in drought stress tolerance of tobacco
Background
Sucrose phosphate synthase (SPS) is an important enzyme in the sucrose synthesis of plants, governing the accumulation and distribution of photosynthetic assimilates, which is essential for plant growth and stress tolerance.
Results
This study successfully identified eight NtSPS genes within the genome of cultivated tobacco. Phylogenetic analysis revealed that these genes are categorized into three subfamilies, a classification supported by the examination of their gene structures and conserved domains. The promoters of the NtSPSs contained a variety of cis-elements associated with plant development, responses to phytohormones, and stress resistance. Expression profiling demonstrated that NtSPS genes exhibit distinct expression patterns across different tissues and under various stress conditions. Notably, the majority of NtSPS genes, especially NtSPS5 and NtSPS6, showed high expression in leaves and increased expression in both roots and leaves following drought treatment. Furthermore, overexpression of NtSPS5 and NtSPS6 in tobacco plants significantly improved the germination rate under mannitol treatment and enhanced the activity of antioxidant enzymes along with chlorophyll fluorescence parameters under drought stress. These results suggest that NtSPS5 and NtSPS6 have a positive impact on drought stress tolerance in tobacco plants.
Conclusions
Therefore, this study provides the significant target in drought resistance breeding and lays the foundation for further investigation into the function and regulatory mechanisms of SPS genes.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.