{"title":"低通量溅射钼栅改善MoS2薄膜质量","authors":"Shinya Imai;Ryo Ono;Iriya Muneta;Kuniyuki Kakushima;Tetsuya Tatsumi;Shigetaka Tomiya;Kazuo Tsutsui;Hitoshi Wakabayashi","doi":"10.1109/JEDS.2024.3502922","DOIUrl":null,"url":null,"abstract":"Lowering the flux of sputtered particles using a molybdenum grid reduced the deposition rate of MoS2 films with an enlargement of the grain size measured by in-plane X-ray diffraction. The MoS2 film crystallinity evaluated by the Raman spectroscopy was improved because the S/Mo ratio was also enhanced by the low-rate sputtering. In addition, the enhancement of the grain size was confirmed from plan-view TEM observations of MoS2 films, consistent with the in-plane XRD results. Therefore, reducing the particle flux during sputtering is expected to contribute to the better-quality MoS2 films for pn-stacked 2D-CMOS devices and human interface devices.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"15-23"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10758789","citationCount":"0","resultStr":"{\"title\":\"Improvement of MoS2 Film Quality by Low Flux of Sputtered Particles Using a Molybdenum Grid\",\"authors\":\"Shinya Imai;Ryo Ono;Iriya Muneta;Kuniyuki Kakushima;Tetsuya Tatsumi;Shigetaka Tomiya;Kazuo Tsutsui;Hitoshi Wakabayashi\",\"doi\":\"10.1109/JEDS.2024.3502922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lowering the flux of sputtered particles using a molybdenum grid reduced the deposition rate of MoS2 films with an enlargement of the grain size measured by in-plane X-ray diffraction. The MoS2 film crystallinity evaluated by the Raman spectroscopy was improved because the S/Mo ratio was also enhanced by the low-rate sputtering. In addition, the enhancement of the grain size was confirmed from plan-view TEM observations of MoS2 films, consistent with the in-plane XRD results. Therefore, reducing the particle flux during sputtering is expected to contribute to the better-quality MoS2 films for pn-stacked 2D-CMOS devices and human interface devices.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"13 \",\"pages\":\"15-23\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10758789\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10758789/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10758789/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Improvement of MoS2 Film Quality by Low Flux of Sputtered Particles Using a Molybdenum Grid
Lowering the flux of sputtered particles using a molybdenum grid reduced the deposition rate of MoS2 films with an enlargement of the grain size measured by in-plane X-ray diffraction. The MoS2 film crystallinity evaluated by the Raman spectroscopy was improved because the S/Mo ratio was also enhanced by the low-rate sputtering. In addition, the enhancement of the grain size was confirmed from plan-view TEM observations of MoS2 films, consistent with the in-plane XRD results. Therefore, reducing the particle flux during sputtering is expected to contribute to the better-quality MoS2 films for pn-stacked 2D-CMOS devices and human interface devices.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.