Qingchun You;Talal Skaik;Peter Young;Nathan Miller;Peter Hunyor;Peter Huggard;Yi Wang
{"title":"具有高交叉极性辨别的亚太赫兹单片金属3d打印波纹喇叭天线","authors":"Qingchun You;Talal Skaik;Peter Young;Nathan Miller;Peter Hunyor;Peter Huggard;Yi Wang","doi":"10.1109/TTHZ.2024.3501585","DOIUrl":null,"url":null,"abstract":"This letter presents a high-performance corrugated horn for the subterahertz, manufactured monolithically using high-precision 3D printing technology based on microlaser sintering of stainless-steel powder. The horn features 45° inclined corrugation stubs that allow the building of the component with its axis vertical without any internal support structures. This ensures circular symmetry of the horn and high cross-polarization discrimination and circumvents radiation performance degradation, typical of tilted printing. Departing from traditional designs, the horn also incorporates a rectangular-to-circular waveguide adapter, not only enhancing compactness but also avoiding errors and losses associated with assembly. The stainless-steel antenna was plated with gold. The prototype, measuring 10.8 mm × 10.8 mm × 29.7 mm, exhibits outstanding performance with a peak gain from 18 to 22 dBi, and >36 dB cross-polar discrimination over the frequency band of 145–225 GHz. This is the first demonstration of 3D-printed corrugation structures in corrugated horns showing high performance beyond 100 GHz.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"15 1","pages":"128-132"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subterahertz Monolithic Metal 3D-Printed Corrugated Horn Antenna With High Cross-Polar Discrimination\",\"authors\":\"Qingchun You;Talal Skaik;Peter Young;Nathan Miller;Peter Hunyor;Peter Huggard;Yi Wang\",\"doi\":\"10.1109/TTHZ.2024.3501585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a high-performance corrugated horn for the subterahertz, manufactured monolithically using high-precision 3D printing technology based on microlaser sintering of stainless-steel powder. The horn features 45° inclined corrugation stubs that allow the building of the component with its axis vertical without any internal support structures. This ensures circular symmetry of the horn and high cross-polarization discrimination and circumvents radiation performance degradation, typical of tilted printing. Departing from traditional designs, the horn also incorporates a rectangular-to-circular waveguide adapter, not only enhancing compactness but also avoiding errors and losses associated with assembly. The stainless-steel antenna was plated with gold. The prototype, measuring 10.8 mm × 10.8 mm × 29.7 mm, exhibits outstanding performance with a peak gain from 18 to 22 dBi, and >36 dB cross-polar discrimination over the frequency band of 145–225 GHz. This is the first demonstration of 3D-printed corrugation structures in corrugated horns showing high performance beyond 100 GHz.\",\"PeriodicalId\":13258,\"journal\":{\"name\":\"IEEE Transactions on Terahertz Science and Technology\",\"volume\":\"15 1\",\"pages\":\"128-132\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Terahertz Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10756523/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10756523/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种高性能的亚太赫兹波纹喇叭,采用基于不锈钢粉末微激光烧结的高精度3D打印技术进行单片制造。喇叭的特点是45°倾斜波纹存根,允许其轴线垂直的组件的建筑,没有任何内部支撑结构。这确保了喇叭的圆形对称性和高交叉偏振辨别,并避免了辐射性能下降,典型的倾斜印刷。与传统设计不同,该喇叭还集成了一个矩形到圆形的波导适配器,不仅增强了紧凑性,而且避免了与组装相关的误差和损失。不锈钢天线镀上了金。该样机尺寸为10.8 mm × 10.8 mm × 29.7 mm,在145-225 GHz频段内具有18 ~ 22 dBi的峰值增益和36 dB的交叉极化分辨力。这是第一次展示3d打印波纹结构的波纹角,显示出超过100 GHz的高性能。
Subterahertz Monolithic Metal 3D-Printed Corrugated Horn Antenna With High Cross-Polar Discrimination
This letter presents a high-performance corrugated horn for the subterahertz, manufactured monolithically using high-precision 3D printing technology based on microlaser sintering of stainless-steel powder. The horn features 45° inclined corrugation stubs that allow the building of the component with its axis vertical without any internal support structures. This ensures circular symmetry of the horn and high cross-polarization discrimination and circumvents radiation performance degradation, typical of tilted printing. Departing from traditional designs, the horn also incorporates a rectangular-to-circular waveguide adapter, not only enhancing compactness but also avoiding errors and losses associated with assembly. The stainless-steel antenna was plated with gold. The prototype, measuring 10.8 mm × 10.8 mm × 29.7 mm, exhibits outstanding performance with a peak gain from 18 to 22 dBi, and >36 dB cross-polar discrimination over the frequency band of 145–225 GHz. This is the first demonstration of 3D-printed corrugation structures in corrugated horns showing high performance beyond 100 GHz.
期刊介绍:
IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.