IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jason B. Gibson, Ajinkya C. Hire, Philip M. Dee, Oscar Barrera, Benjamin Geisler, Peter J. Hirschfeld, Richard G. Hennig
{"title":"​","authors":"Jason B. Gibson, Ajinkya C. Hire, Philip M. Dee, Oscar Barrera, Benjamin Geisler, Peter J. Hirschfeld, Richard G. Hennig","doi":"10.1038/s41524-024-01475-4","DOIUrl":null,"url":null,"abstract":"<p>Integrating deep learning with the search for new electron-phonon superconductors represents a burgeoning field of research, where the primary challenge lies in the computational intensity of calculating the electron-phonon spectral function, <i>α</i><sup>2</sup><i>F</i>(<i>ω</i>), the essential ingredient of Midgal-Eliashberg theory of superconductivity. To overcome this challenge, we adopt a two-step approach. First, we compute <i>α</i><sup>2</sup><i>F</i>(<i>ω</i>) for 818 dynamically stable materials. We then train a deep-learning model to predict <i>α</i><sup>2</sup><i>F</i>(<i>ω</i>), using a training strategy tailored for limited data to temper the model’s overfitting, enhancing predictions. Specifically, we train a Bootstrapped Ensemble of Tempered Equivariant graph neural NETworks (BETE-NET), obtaining an MAE of 0.21, 45 K, and 43 K for the moments derived from <i>α</i><sup>2</sup><i>F</i>(<i>ω</i>): <i>λ</i>, <span>\\({\\omega }_{\\log }\\)</span>, and <i>ω</i><sub>2</sub>, respectively, yielding an MAE of 2.5 K for the critical temperature, <i>T</i><sub><i>c</i></sub>. Further, we incorporate domain knowledge of the site-projected phonon density of states to impose inductive bias into the model’s node attributes and enhance predictions. This methodological innovation decreases the MAE to 0.18, 29 K, and 28 K, respectively, yielding an MAE of 2.1 K for <i>T</i><sub><i>c</i></sub>. We illustrate the practical application of our model in high-throughput screening for high-<i>T</i><sub>c</sub> materials. The model demonstrates an average precision nearly five times higher than random screening, highlighting the potential of ML in accelerating superconductor discovery. BETE-NET accelerates the search for high-<i>T</i><sub>c</sub> superconductors while setting a precedent for applying ML in materials discovery, particularly when data is limited.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"61 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating superconductor discovery through tempered deep learning of the electron-phonon spectral function\",\"authors\":\"Jason B. Gibson, Ajinkya C. Hire, Philip M. Dee, Oscar Barrera, Benjamin Geisler, Peter J. Hirschfeld, Richard G. Hennig\",\"doi\":\"10.1038/s41524-024-01475-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Integrating deep learning with the search for new electron-phonon superconductors represents a burgeoning field of research, where the primary challenge lies in the computational intensity of calculating the electron-phonon spectral function, <i>α</i><sup>2</sup><i>F</i>(<i>ω</i>), the essential ingredient of Midgal-Eliashberg theory of superconductivity. To overcome this challenge, we adopt a two-step approach. First, we compute <i>α</i><sup>2</sup><i>F</i>(<i>ω</i>) for 818 dynamically stable materials. We then train a deep-learning model to predict <i>α</i><sup>2</sup><i>F</i>(<i>ω</i>), using a training strategy tailored for limited data to temper the model’s overfitting, enhancing predictions. Specifically, we train a Bootstrapped Ensemble of Tempered Equivariant graph neural NETworks (BETE-NET), obtaining an MAE of 0.21, 45 K, and 43 K for the moments derived from <i>α</i><sup>2</sup><i>F</i>(<i>ω</i>): <i>λ</i>, <span>\\\\({\\\\omega }_{\\\\log }\\\\)</span>, and <i>ω</i><sub>2</sub>, respectively, yielding an MAE of 2.5 K for the critical temperature, <i>T</i><sub><i>c</i></sub>. Further, we incorporate domain knowledge of the site-projected phonon density of states to impose inductive bias into the model’s node attributes and enhance predictions. This methodological innovation decreases the MAE to 0.18, 29 K, and 28 K, respectively, yielding an MAE of 2.1 K for <i>T</i><sub><i>c</i></sub>. We illustrate the practical application of our model in high-throughput screening for high-<i>T</i><sub>c</sub> materials. The model demonstrates an average precision nearly five times higher than random screening, highlighting the potential of ML in accelerating superconductor discovery. BETE-NET accelerates the search for high-<i>T</i><sub>c</sub> superconductors while setting a precedent for applying ML in materials discovery, particularly when data is limited.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01475-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01475-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

将深度学习与寻找新的电子-声子超导体结合起来代表了一个新兴的研究领域,其中主要的挑战在于计算电子-声子谱函数α2F(ω)的计算强度,α2F(ω)是Midgal-Eliashberg超导理论的基本成分。为了克服这一挑战,我们采取了两步走的方法。首先,我们计算了818动态稳定材料的α2F(ω)。然后,我们训练一个深度学习模型来预测α2F(ω),使用为有限数据量身定制的训练策略来调节模型的过拟合,增强预测。具体来说,我们训练了一个bootstrap Ensemble of Tempered Equivariant graph neural NETworks (BETE-NET),分别得到了α2F(ω): λ、\({\omega }_{\log }\)和ω2的矩的MAE分别为0.21、45 K和43 K,得到了临界温度Tc的MAE为2.5 K。此外,我们结合了状态的位置投影声子密度的领域知识,将归纳偏置施加到模型的节点属性中,并增强了预测。这种方法上的创新将MAE分别降低到0.18、29 K和28 K,从而使Tc的MAE为2.1 K。我们举例说明了我们的模型在高通量筛选高tc材料中的实际应用。该模型的平均精度比随机筛选高出近5倍,突出了机器学习在加速超导体发现方面的潜力。BETE-NET加速了对高tc超导体的研究,同时为将机器学习应用于材料发现开创了先例,特别是在数据有限的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerating superconductor discovery through tempered deep learning of the electron-phonon spectral function

Accelerating superconductor discovery through tempered deep learning of the electron-phonon spectral function

Integrating deep learning with the search for new electron-phonon superconductors represents a burgeoning field of research, where the primary challenge lies in the computational intensity of calculating the electron-phonon spectral function, α2F(ω), the essential ingredient of Midgal-Eliashberg theory of superconductivity. To overcome this challenge, we adopt a two-step approach. First, we compute α2F(ω) for 818 dynamically stable materials. We then train a deep-learning model to predict α2F(ω), using a training strategy tailored for limited data to temper the model’s overfitting, enhancing predictions. Specifically, we train a Bootstrapped Ensemble of Tempered Equivariant graph neural NETworks (BETE-NET), obtaining an MAE of 0.21, 45 K, and 43 K for the moments derived from α2F(ω): λ, \({\omega }_{\log }\), and ω2, respectively, yielding an MAE of 2.5 K for the critical temperature, Tc. Further, we incorporate domain knowledge of the site-projected phonon density of states to impose inductive bias into the model’s node attributes and enhance predictions. This methodological innovation decreases the MAE to 0.18, 29 K, and 28 K, respectively, yielding an MAE of 2.1 K for Tc. We illustrate the practical application of our model in high-throughput screening for high-Tc materials. The model demonstrates an average precision nearly five times higher than random screening, highlighting the potential of ML in accelerating superconductor discovery. BETE-NET accelerates the search for high-Tc superconductors while setting a precedent for applying ML in materials discovery, particularly when data is limited.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信