量子控制中基于辅助任务的深度强化学习

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Shumin Zhou;Hailan Ma;Sen Kuang;Daoyi Dong
{"title":"量子控制中基于辅助任务的深度强化学习","authors":"Shumin Zhou;Hailan Ma;Sen Kuang;Daoyi Dong","doi":"10.1109/TCYB.2024.3521300","DOIUrl":null,"url":null,"abstract":"Due to its property of not requiring prior knowledge of the environment, reinforcement learning (RL) has significant potential for solving quantum control problems. In this work, we investigate the effectiveness of continuous control policies based on deep deterministic policy gradient. To achieve good control of quantum systems with high fidelity, we propose an auxiliary task-based deep RL (AT-DRL) for quantum control. In particular, we design an auxiliary task to predict the fidelity value, sharing partial parameters with the main network (from the main RL task). The auxiliary task learns synchronously with the main task, allowing one to extract intrinsic features of the environment, thus aiding the agent to achieve the desired state with high fidelity. To further enhance the control performance, we also design a guided reward function based on the fidelity of quantum states that enables gradual fidelity improvement. Numerical simulations demonstrate that the proposed AT-DRL can provide a good solution to the exploration of quantum dynamics. It not only achieves high task fidelities but also demonstrates fast learning rates. Moreover, AT-DRL has great potential in designing control pulses that achieve effective quantum state preparation.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 2","pages":"712-725"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auxiliary Task-Based Deep Reinforcement Learning for Quantum Control\",\"authors\":\"Shumin Zhou;Hailan Ma;Sen Kuang;Daoyi Dong\",\"doi\":\"10.1109/TCYB.2024.3521300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its property of not requiring prior knowledge of the environment, reinforcement learning (RL) has significant potential for solving quantum control problems. In this work, we investigate the effectiveness of continuous control policies based on deep deterministic policy gradient. To achieve good control of quantum systems with high fidelity, we propose an auxiliary task-based deep RL (AT-DRL) for quantum control. In particular, we design an auxiliary task to predict the fidelity value, sharing partial parameters with the main network (from the main RL task). The auxiliary task learns synchronously with the main task, allowing one to extract intrinsic features of the environment, thus aiding the agent to achieve the desired state with high fidelity. To further enhance the control performance, we also design a guided reward function based on the fidelity of quantum states that enables gradual fidelity improvement. Numerical simulations demonstrate that the proposed AT-DRL can provide a good solution to the exploration of quantum dynamics. It not only achieves high task fidelities but also demonstrates fast learning rates. Moreover, AT-DRL has great potential in designing control pulses that achieve effective quantum state preparation.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 2\",\"pages\":\"712-725\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10830787/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10830787/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auxiliary Task-Based Deep Reinforcement Learning for Quantum Control
Due to its property of not requiring prior knowledge of the environment, reinforcement learning (RL) has significant potential for solving quantum control problems. In this work, we investigate the effectiveness of continuous control policies based on deep deterministic policy gradient. To achieve good control of quantum systems with high fidelity, we propose an auxiliary task-based deep RL (AT-DRL) for quantum control. In particular, we design an auxiliary task to predict the fidelity value, sharing partial parameters with the main network (from the main RL task). The auxiliary task learns synchronously with the main task, allowing one to extract intrinsic features of the environment, thus aiding the agent to achieve the desired state with high fidelity. To further enhance the control performance, we also design a guided reward function based on the fidelity of quantum states that enables gradual fidelity improvement. Numerical simulations demonstrate that the proposed AT-DRL can provide a good solution to the exploration of quantum dynamics. It not only achieves high task fidelities but also demonstrates fast learning rates. Moreover, AT-DRL has great potential in designing control pulses that achieve effective quantum state preparation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信