Zijian Jiang, Chaoli Sun, Xiaotong Liu, Hui Shi, Sisi Wang
{"title":"半监督学习技术辅助多目标进化算法求解计算量大的问题","authors":"Zijian Jiang, Chaoli Sun, Xiaotong Liu, Hui Shi, Sisi Wang","doi":"10.1007/s40747-024-01715-6","DOIUrl":null,"url":null,"abstract":"<p>Existing multi-objective evolutionary algorithms (MOEAs) have demonstrated excellent efficiency when tackling multi-objective tasks. However, its use in computationally expensive multi-objective issues is hindered by the large number of reliable evaluations needed to find Pareto-optimal solutions. This paper employs the semi-supervised learning technique in model training to aid in evolutionary algorithms for addressing expensive multi-objective issues, resulting in the semi-supervised learning technique assisted multi-objective evolutionary algorithm (SLTA-MOEA). In SLTA-MOEA, the value of every objective function is determined as a weighted mean of values approximated by all surrogate models for that objective function, with the weights optimized through a convex combination problem. Furthermore, the number of unlabelled solutions participating in model training is adaptively determined based on the objective evaluations conducted. A group of tests on DTLZ test problems with 3, 5, and 10 objective functions, combined with a practical application, are conducted to assess the effectiveness of our proposed method. Comparative experimental results versus six state-of-the-art evolutionary algorithms for expensive problems show high efficiency of SLTA-MOEA, particularly for problems with irregular Pareto fronts.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"7 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-supervised learning technique assisted multi-objective evolutionary algorithm for computationally expensive problems\",\"authors\":\"Zijian Jiang, Chaoli Sun, Xiaotong Liu, Hui Shi, Sisi Wang\",\"doi\":\"10.1007/s40747-024-01715-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing multi-objective evolutionary algorithms (MOEAs) have demonstrated excellent efficiency when tackling multi-objective tasks. However, its use in computationally expensive multi-objective issues is hindered by the large number of reliable evaluations needed to find Pareto-optimal solutions. This paper employs the semi-supervised learning technique in model training to aid in evolutionary algorithms for addressing expensive multi-objective issues, resulting in the semi-supervised learning technique assisted multi-objective evolutionary algorithm (SLTA-MOEA). In SLTA-MOEA, the value of every objective function is determined as a weighted mean of values approximated by all surrogate models for that objective function, with the weights optimized through a convex combination problem. Furthermore, the number of unlabelled solutions participating in model training is adaptively determined based on the objective evaluations conducted. A group of tests on DTLZ test problems with 3, 5, and 10 objective functions, combined with a practical application, are conducted to assess the effectiveness of our proposed method. Comparative experimental results versus six state-of-the-art evolutionary algorithms for expensive problems show high efficiency of SLTA-MOEA, particularly for problems with irregular Pareto fronts.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01715-6\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01715-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A semi-supervised learning technique assisted multi-objective evolutionary algorithm for computationally expensive problems
Existing multi-objective evolutionary algorithms (MOEAs) have demonstrated excellent efficiency when tackling multi-objective tasks. However, its use in computationally expensive multi-objective issues is hindered by the large number of reliable evaluations needed to find Pareto-optimal solutions. This paper employs the semi-supervised learning technique in model training to aid in evolutionary algorithms for addressing expensive multi-objective issues, resulting in the semi-supervised learning technique assisted multi-objective evolutionary algorithm (SLTA-MOEA). In SLTA-MOEA, the value of every objective function is determined as a weighted mean of values approximated by all surrogate models for that objective function, with the weights optimized through a convex combination problem. Furthermore, the number of unlabelled solutions participating in model training is adaptively determined based on the objective evaluations conducted. A group of tests on DTLZ test problems with 3, 5, and 10 objective functions, combined with a practical application, are conducted to assess the effectiveness of our proposed method. Comparative experimental results versus six state-of-the-art evolutionary algorithms for expensive problems show high efficiency of SLTA-MOEA, particularly for problems with irregular Pareto fronts.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.