Ricardo Luz Leitão Guerra, Cezar Luz Leitão Guerra, Mariana Gouveia Bastos Meirelles, Gabriel Castilho Sandoval Barbosa, Eduardo Amorim Novais, Emmerson Badaró, Luiz Filipe Adami Lucatto, Luiz Roisman
{"title":"通过蓝光反射成像探索视网膜状况。","authors":"Ricardo Luz Leitão Guerra, Cezar Luz Leitão Guerra, Mariana Gouveia Bastos Meirelles, Gabriel Castilho Sandoval Barbosa, Eduardo Amorim Novais, Emmerson Badaró, Luiz Filipe Adami Lucatto, Luiz Roisman","doi":"10.1016/j.preteyeres.2024.101326","DOIUrl":null,"url":null,"abstract":"<p><p>Blue light reflectance (BLR) imaging offers a non-invasive, cost-effective method for evaluating retinal structures by analyzing the reflectance and absorption characteristics of the inner retinal layers. By leveraging blue light's interaction with retinal tissues, BLR enhances visualization beyond the retinal nerve fiber layer, improving detection of structures such as the outer plexiform layer and macular pigment. Its diagnostic utility has been demonstrated in distinct retinal conditions, including hyperreflectance in early macular telangiectasia, hyporeflectance in non-perfused areas indicative of ischemia, identification of pseudodrusen patterns (notably the ribbon type), and detection of peripheral retinal tears and degenerative retinoschisis in eyes with reduced retinal pigment epithelial pigmentation. Best practices for image acquisition and interpretation are discussed, emphasizing standardization to minimize variability. Common artifacts and mitigation strategies are also addressed, ensuring image reliability. BLR's clinical utility, limitations, and future research directions are highlighted, particularly its potential in automated image analysis and quantitative assessment. Different BLR acquisition methods, such as fundus photography, confocal scanning laser ophthalmoscopy, and broad line fundus imaging, are evaluated for their respective advantages and limitations. As research advances, BLR's integration into multimodal workflows is expected to improve early detection and precise monitoring of retinal diseases.</p>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":" ","pages":"101326"},"PeriodicalIF":18.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring retinal conditions through blue light reflectance imaging.\",\"authors\":\"Ricardo Luz Leitão Guerra, Cezar Luz Leitão Guerra, Mariana Gouveia Bastos Meirelles, Gabriel Castilho Sandoval Barbosa, Eduardo Amorim Novais, Emmerson Badaró, Luiz Filipe Adami Lucatto, Luiz Roisman\",\"doi\":\"10.1016/j.preteyeres.2024.101326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blue light reflectance (BLR) imaging offers a non-invasive, cost-effective method for evaluating retinal structures by analyzing the reflectance and absorption characteristics of the inner retinal layers. By leveraging blue light's interaction with retinal tissues, BLR enhances visualization beyond the retinal nerve fiber layer, improving detection of structures such as the outer plexiform layer and macular pigment. Its diagnostic utility has been demonstrated in distinct retinal conditions, including hyperreflectance in early macular telangiectasia, hyporeflectance in non-perfused areas indicative of ischemia, identification of pseudodrusen patterns (notably the ribbon type), and detection of peripheral retinal tears and degenerative retinoschisis in eyes with reduced retinal pigment epithelial pigmentation. Best practices for image acquisition and interpretation are discussed, emphasizing standardization to minimize variability. Common artifacts and mitigation strategies are also addressed, ensuring image reliability. BLR's clinical utility, limitations, and future research directions are highlighted, particularly its potential in automated image analysis and quantitative assessment. Different BLR acquisition methods, such as fundus photography, confocal scanning laser ophthalmoscopy, and broad line fundus imaging, are evaluated for their respective advantages and limitations. As research advances, BLR's integration into multimodal workflows is expected to improve early detection and precise monitoring of retinal diseases.</p>\",\"PeriodicalId\":21159,\"journal\":{\"name\":\"Progress in Retinal and Eye Research\",\"volume\":\" \",\"pages\":\"101326\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Retinal and Eye Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.preteyeres.2024.101326\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.preteyeres.2024.101326","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Exploring retinal conditions through blue light reflectance imaging.
Blue light reflectance (BLR) imaging offers a non-invasive, cost-effective method for evaluating retinal structures by analyzing the reflectance and absorption characteristics of the inner retinal layers. By leveraging blue light's interaction with retinal tissues, BLR enhances visualization beyond the retinal nerve fiber layer, improving detection of structures such as the outer plexiform layer and macular pigment. Its diagnostic utility has been demonstrated in distinct retinal conditions, including hyperreflectance in early macular telangiectasia, hyporeflectance in non-perfused areas indicative of ischemia, identification of pseudodrusen patterns (notably the ribbon type), and detection of peripheral retinal tears and degenerative retinoschisis in eyes with reduced retinal pigment epithelial pigmentation. Best practices for image acquisition and interpretation are discussed, emphasizing standardization to minimize variability. Common artifacts and mitigation strategies are also addressed, ensuring image reliability. BLR's clinical utility, limitations, and future research directions are highlighted, particularly its potential in automated image analysis and quantitative assessment. Different BLR acquisition methods, such as fundus photography, confocal scanning laser ophthalmoscopy, and broad line fundus imaging, are evaluated for their respective advantages and limitations. As research advances, BLR's integration into multimodal workflows is expected to improve early detection and precise monitoring of retinal diseases.
期刊介绍:
Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists.
The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.