植物乳杆菌P101通过调节肠道菌群减轻微塑料与邻苯二甲酸二(2-乙基己基)酯复合的肝毒性

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jiajun Guo, Tao You, Xiaoyan Feng, Hengyi Xu
{"title":"植物乳杆菌P101通过调节肠道菌群减轻微塑料与邻苯二甲酸二(2-乙基己基)酯复合的肝毒性","authors":"Jiajun Guo, Tao You, Xiaoyan Feng, Hengyi Xu","doi":"10.1007/s12602-024-10439-5","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage. This study explored the effectiveness and underlining mechanism of an excellent probiotic property Lactiplantibacillus plantarum P101 (L. plantarum P101) to the combined hepatotoxicity of MPs and DEHP. In this study, mice were exposed to DEHP and MPs via free drinking water, followed by intervention with L. plantarum P101. Results showed that co-exposure to DEHP and MPs caused severe oxidative stress and inflammation in the liver and intestines, which was reversed after probiotic intervention. Moreover, the intervention reshaped the structure of gut microbiota and alleviated the liver damage after the combined exposure. Together, we found the intervention of L. plantarum P101 effectively mitigated the toxic effects on the liver system caused by the co-exposure to MPs and DEHP, offering a promising strategy for reducing the combined toxicity of these substances.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota.\",\"authors\":\"Jiajun Guo, Tao You, Xiaoyan Feng, Hengyi Xu\",\"doi\":\"10.1007/s12602-024-10439-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage. This study explored the effectiveness and underlining mechanism of an excellent probiotic property Lactiplantibacillus plantarum P101 (L. plantarum P101) to the combined hepatotoxicity of MPs and DEHP. In this study, mice were exposed to DEHP and MPs via free drinking water, followed by intervention with L. plantarum P101. Results showed that co-exposure to DEHP and MPs caused severe oxidative stress and inflammation in the liver and intestines, which was reversed after probiotic intervention. Moreover, the intervention reshaped the structure of gut microbiota and alleviated the liver damage after the combined exposure. Together, we found the intervention of L. plantarum P101 effectively mitigated the toxic effects on the liver system caused by the co-exposure to MPs and DEHP, offering a promising strategy for reducing the combined toxicity of these substances.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-024-10439-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10439-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微塑料(MPs)和邻苯二甲酸二(2-乙基己基)酯(DEHP)作为新兴污染物,由于其共同暴露的风险和对人类的毒性,引起了越来越多的关注。乳酸菌已被证明在减轻机体损伤方面起着重要作用。益生菌干预被广泛认为是一种安全健康的治疗策略,旨在减轻有机损伤。本研究探讨了植物乳杆菌P101 (L. plantarum P101)良好的益生菌特性对MPs和DEHP联合肝毒性的作用及其机制。在这项研究中,小鼠通过免费饮用水暴露于DEHP和MPs,然后用植物乳杆菌P101干预。结果表明,DEHP和MPs的共同暴露导致肝脏和肠道严重的氧化应激和炎症,在益生菌干预后这种情况被逆转。此外,干预重塑了肠道微生物群的结构,减轻了联合暴露后的肝脏损伤。总之,我们发现植物乳杆菌P101的干预有效地减轻了MPs和DEHP共同暴露对肝脏系统的毒性作用,为减少这些物质的联合毒性提供了一个有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota.

Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage. This study explored the effectiveness and underlining mechanism of an excellent probiotic property Lactiplantibacillus plantarum P101 (L. plantarum P101) to the combined hepatotoxicity of MPs and DEHP. In this study, mice were exposed to DEHP and MPs via free drinking water, followed by intervention with L. plantarum P101. Results showed that co-exposure to DEHP and MPs caused severe oxidative stress and inflammation in the liver and intestines, which was reversed after probiotic intervention. Moreover, the intervention reshaped the structure of gut microbiota and alleviated the liver damage after the combined exposure. Together, we found the intervention of L. plantarum P101 effectively mitigated the toxic effects on the liver system caused by the co-exposure to MPs and DEHP, offering a promising strategy for reducing the combined toxicity of these substances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信