{"title":"基于编码器优化策略的对抗性正则化图变分自编码器","authors":"Jin Dai, Yanhui Peng, Guoyin Wang, Feng Hu","doi":"10.1007/s10462-024-11068-8","DOIUrl":null,"url":null,"abstract":"<div><p>Graph variational autoencoders (VAEs) have been widely used to address the representation problem of graph nodes. However, most existing graph VAEs focus on minimizing reconstruction loss and overlook the uncertainty in the latent distribution and the issue of posterior collapse during training. An Adversarial Regularize Graph Variational Autoencoder Based on Encoder Optimization Strategy (MCM-ARVGE) is proposed from the perspective of network structure and loss function. MCM-ARVGE introduces a Multi-dimensional Cloud Generator (MCG) that transforms the traditional encoder, expanding the Gaussian distribution into a Gaussian cloud distribution. Furthermore, MCM-ARVGE employs the idea of adversarial regularization to train the Gaussian cloud distribution, reducing the randomness of the Gaussian cloud distribution. Finally, based on the Gaussian cloud distribution, an effective uncertainty similarity measurement method for cloud distributions is introduced to address the problem of posterior collapse. Experimental results validate the universality and effectiveness of MCM-ARVGE, as it outperforms the baseline model in graph embedding tasks.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 3","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11068-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Adversarial regularize graph variational autoencoder based on encoder optimization strategy\",\"authors\":\"Jin Dai, Yanhui Peng, Guoyin Wang, Feng Hu\",\"doi\":\"10.1007/s10462-024-11068-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graph variational autoencoders (VAEs) have been widely used to address the representation problem of graph nodes. However, most existing graph VAEs focus on minimizing reconstruction loss and overlook the uncertainty in the latent distribution and the issue of posterior collapse during training. An Adversarial Regularize Graph Variational Autoencoder Based on Encoder Optimization Strategy (MCM-ARVGE) is proposed from the perspective of network structure and loss function. MCM-ARVGE introduces a Multi-dimensional Cloud Generator (MCG) that transforms the traditional encoder, expanding the Gaussian distribution into a Gaussian cloud distribution. Furthermore, MCM-ARVGE employs the idea of adversarial regularization to train the Gaussian cloud distribution, reducing the randomness of the Gaussian cloud distribution. Finally, based on the Gaussian cloud distribution, an effective uncertainty similarity measurement method for cloud distributions is introduced to address the problem of posterior collapse. Experimental results validate the universality and effectiveness of MCM-ARVGE, as it outperforms the baseline model in graph embedding tasks.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 3\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-11068-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-11068-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11068-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Adversarial regularize graph variational autoencoder based on encoder optimization strategy
Graph variational autoencoders (VAEs) have been widely used to address the representation problem of graph nodes. However, most existing graph VAEs focus on minimizing reconstruction loss and overlook the uncertainty in the latent distribution and the issue of posterior collapse during training. An Adversarial Regularize Graph Variational Autoencoder Based on Encoder Optimization Strategy (MCM-ARVGE) is proposed from the perspective of network structure and loss function. MCM-ARVGE introduces a Multi-dimensional Cloud Generator (MCG) that transforms the traditional encoder, expanding the Gaussian distribution into a Gaussian cloud distribution. Furthermore, MCM-ARVGE employs the idea of adversarial regularization to train the Gaussian cloud distribution, reducing the randomness of the Gaussian cloud distribution. Finally, based on the Gaussian cloud distribution, an effective uncertainty similarity measurement method for cloud distributions is introduced to address the problem of posterior collapse. Experimental results validate the universality and effectiveness of MCM-ARVGE, as it outperforms the baseline model in graph embedding tasks.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.