改进LSHADE-SPACMA,采用新的突变策略和外部存档机制进行数值优化和点云配准

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shengwei Fu, Chi Ma, Ke Li, Cankun Xie, Qingsong Fan, Haisong Huang, Jiangxue Xie, Guozhang Zhang, Mingyang Yu
{"title":"改进LSHADE-SPACMA,采用新的突变策略和外部存档机制进行数值优化和点云配准","authors":"Shengwei Fu,&nbsp;Chi Ma,&nbsp;Ke Li,&nbsp;Cankun Xie,&nbsp;Qingsong Fan,&nbsp;Haisong Huang,&nbsp;Jiangxue Xie,&nbsp;Guozhang Zhang,&nbsp;Mingyang Yu","doi":"10.1007/s10462-024-11053-1","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical optimization and point cloud registration are critical research topics in the field of artificial intelligence. The differential evolution algorithm is an effective approach to address these problems, and LSHADE-SPACMA, the winning algorithm of CEC2017, is a competitive differential evolution variant. However, LSHADE-SPACMA’s local exploitation capability can sometimes be insufficient when handling these challenges. Therefore, in this work, we propose a modified version of LSHADE-SPACMA (mLSHADE-SPACMA) for numerical optimization and point cloud registration. Compared to the original approach, this work presents three main innovations. First, we present a precise elimination and generation mechanism to enhance the algorithm’s local exploitation ability. Second, we introduce a mutation strategy based on a modified semi-parametric adaptive strategy and rank-based selective pressure, which improves the algorithm’s evolutionary direction. Third, we propose an elite-based external archiving mechanism, which ensures the diversity of the external population and can accelerate the algorithm’s convergence progress. Additionally, we utilize the CEC2014 (Dim = 10, 30, 50, 100) and CEC2017 (Dim = 10, 30, 50, 100) test suites for numerical optimization experiments, comparing our approach against: (1) 10 recent CEC winner algorithms, including LSHADE, EBOwithCMAR, jSO, LSHADE-cnEpSin, HSES, LSHADE-RSP, ELSHADE-SPACMA, EA4eig, L-SRTDE, and LSHADE-SPACMA; (2) 4 advanced variants: APSM-jSO, LensOBLDE, ACD-DE, and MIDE. The results of the Wilcoxon signed-rank test and Friedman mean rank test demonstrate that mLSHADE-SPACMA not only outperforms the original LSHADE-SPACMA but also surpasses other high-performance optimizers, except that it is inferior L-SRTDE on CEC2017. Finally, 25 point cloud registration cases from the Fast Global Registration dataset are applied for simulation analysis to demonstrate the potential of the developed mLSHADE-SPACMA technique for solving practical optimization problems. The code is available at https://github.com/ShengweiFu?tab=repositories and https://ww2.mathworks.cn/matlabcentral/fileexchange/my-file-exchange</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 3","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11053-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Modified LSHADE-SPACMA with new mutation strategy and external archive mechanism for numerical optimization and point cloud registration\",\"authors\":\"Shengwei Fu,&nbsp;Chi Ma,&nbsp;Ke Li,&nbsp;Cankun Xie,&nbsp;Qingsong Fan,&nbsp;Haisong Huang,&nbsp;Jiangxue Xie,&nbsp;Guozhang Zhang,&nbsp;Mingyang Yu\",\"doi\":\"10.1007/s10462-024-11053-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerical optimization and point cloud registration are critical research topics in the field of artificial intelligence. The differential evolution algorithm is an effective approach to address these problems, and LSHADE-SPACMA, the winning algorithm of CEC2017, is a competitive differential evolution variant. However, LSHADE-SPACMA’s local exploitation capability can sometimes be insufficient when handling these challenges. Therefore, in this work, we propose a modified version of LSHADE-SPACMA (mLSHADE-SPACMA) for numerical optimization and point cloud registration. Compared to the original approach, this work presents three main innovations. First, we present a precise elimination and generation mechanism to enhance the algorithm’s local exploitation ability. Second, we introduce a mutation strategy based on a modified semi-parametric adaptive strategy and rank-based selective pressure, which improves the algorithm’s evolutionary direction. Third, we propose an elite-based external archiving mechanism, which ensures the diversity of the external population and can accelerate the algorithm’s convergence progress. Additionally, we utilize the CEC2014 (Dim = 10, 30, 50, 100) and CEC2017 (Dim = 10, 30, 50, 100) test suites for numerical optimization experiments, comparing our approach against: (1) 10 recent CEC winner algorithms, including LSHADE, EBOwithCMAR, jSO, LSHADE-cnEpSin, HSES, LSHADE-RSP, ELSHADE-SPACMA, EA4eig, L-SRTDE, and LSHADE-SPACMA; (2) 4 advanced variants: APSM-jSO, LensOBLDE, ACD-DE, and MIDE. The results of the Wilcoxon signed-rank test and Friedman mean rank test demonstrate that mLSHADE-SPACMA not only outperforms the original LSHADE-SPACMA but also surpasses other high-performance optimizers, except that it is inferior L-SRTDE on CEC2017. Finally, 25 point cloud registration cases from the Fast Global Registration dataset are applied for simulation analysis to demonstrate the potential of the developed mLSHADE-SPACMA technique for solving practical optimization problems. The code is available at https://github.com/ShengweiFu?tab=repositories and https://ww2.mathworks.cn/matlabcentral/fileexchange/my-file-exchange</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 3\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-11053-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-11053-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11053-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数值优化和点云配准是人工智能领域的重要研究课题。差分进化算法是解决这些问题的有效方法,而CEC2017的获奖算法LSHADE-SPACMA是一种竞争性的差分进化变体。然而,在处理这些挑战时,LSHADE-SPACMA的本地开发能力有时可能不足。因此,在这项工作中,我们提出了一个改进版本的LSHADE-SPACMA (mLSHADE-SPACMA)用于数值优化和点云配准。与原来的方法相比,这项工作提出了三个主要的创新。首先,我们提出了一种精确的消除和生成机制,以增强算法的局部开发能力。其次,引入了一种基于改进的半参数自适应策略和基于秩的选择压力的突变策略,改进了算法的进化方向;第三,提出了一种基于精英的外部存档机制,保证了外部种群的多样性,加快了算法的收敛速度。此外,我们利用CEC2014 (Dim = 10、30、50、100)和CEC2017 (Dim = 10、30、50、100)测试套件进行数值优化实验,并将我们的方法与以下10种最近的CEC优胜算法进行比较:LSHADE、EBOwithCMAR、jSO、LSHADE- cnepsin、HSES、LSHADE- rsp、ELSHADE-SPACMA、EA4eig、L-SRTDE和LSHADE- spacma;(2) 4种高级变体:APSM-jSO、LensOBLDE、ACD-DE和MIDE。Wilcoxon符号秩检验和Friedman均值秩检验的结果表明,mLSHADE-SPACMA不仅优于原始的LSHADE-SPACMA,而且优于其他高性能优化器,只是在CEC2017上不如L-SRTDE。最后,应用Fast Global registration数据集中的25个点云配准案例进行仿真分析,以证明所开发的mLSHADE-SPACMA技术在解决实际优化问题方面的潜力。代码可在https://github.com/ShengweiFu?tab=repositories和https://ww2.mathworks.cn/matlabcentral/fileexchange/my-file-exchange上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified LSHADE-SPACMA with new mutation strategy and external archive mechanism for numerical optimization and point cloud registration

Numerical optimization and point cloud registration are critical research topics in the field of artificial intelligence. The differential evolution algorithm is an effective approach to address these problems, and LSHADE-SPACMA, the winning algorithm of CEC2017, is a competitive differential evolution variant. However, LSHADE-SPACMA’s local exploitation capability can sometimes be insufficient when handling these challenges. Therefore, in this work, we propose a modified version of LSHADE-SPACMA (mLSHADE-SPACMA) for numerical optimization and point cloud registration. Compared to the original approach, this work presents three main innovations. First, we present a precise elimination and generation mechanism to enhance the algorithm’s local exploitation ability. Second, we introduce a mutation strategy based on a modified semi-parametric adaptive strategy and rank-based selective pressure, which improves the algorithm’s evolutionary direction. Third, we propose an elite-based external archiving mechanism, which ensures the diversity of the external population and can accelerate the algorithm’s convergence progress. Additionally, we utilize the CEC2014 (Dim = 10, 30, 50, 100) and CEC2017 (Dim = 10, 30, 50, 100) test suites for numerical optimization experiments, comparing our approach against: (1) 10 recent CEC winner algorithms, including LSHADE, EBOwithCMAR, jSO, LSHADE-cnEpSin, HSES, LSHADE-RSP, ELSHADE-SPACMA, EA4eig, L-SRTDE, and LSHADE-SPACMA; (2) 4 advanced variants: APSM-jSO, LensOBLDE, ACD-DE, and MIDE. The results of the Wilcoxon signed-rank test and Friedman mean rank test demonstrate that mLSHADE-SPACMA not only outperforms the original LSHADE-SPACMA but also surpasses other high-performance optimizers, except that it is inferior L-SRTDE on CEC2017. Finally, 25 point cloud registration cases from the Fast Global Registration dataset are applied for simulation analysis to demonstrate the potential of the developed mLSHADE-SPACMA technique for solving practical optimization problems. The code is available at https://github.com/ShengweiFu?tab=repositories and https://ww2.mathworks.cn/matlabcentral/fileexchange/my-file-exchange

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信