平衡电荷损失和载流子迁移率:VS-DRAM双栅接入晶体管器件几何优化的多尺度建模方法

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jun Deng;Xinhe Wang;Yangyi Ou;Z. Bai;Tun Wang;Xiaomeng Liu;Mingli Liu;Qi Hu;Xiangsheng Wang;Guilei Wang;Chao Zhao
{"title":"平衡电荷损失和载流子迁移率:VS-DRAM双栅接入晶体管器件几何优化的多尺度建模方法","authors":"Jun Deng;Xinhe Wang;Yangyi Ou;Z. Bai;Tun Wang;Xiaomeng Liu;Mingli Liu;Qi Hu;Xiangsheng Wang;Guilei Wang;Chao Zhao","doi":"10.1109/TED.2024.3493066","DOIUrl":null,"url":null,"abstract":"In the pursuit of advancing memory density, the vertically stacked dynamic random-access memory (VS-DRAM) architecture shows promise but encounters significant obstacles. This study focuses on optimizing the device geometry of VS-DRAM access transistors to achieve a delicate balance between reducing charge loss and maintaining carrier mobility. We developed a robust modeling methodology to quantify both the charge loss induced by the floating body effect (FBE) and the carrier mobility limited by surface roughness (SR). Our investigation carefully examines how thinning the transistor channel can mitigate FBE while avoiding adverse effects on surface scattering of charge carriers, all while considering the emerging geometry confinement effect. Through meticulous analysis, we aim to identify the optimal channel thickness range for VS-DRAM transistors, offering essential insights for the advancement of high-density memory technologies.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"199-205"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing Charge Loss and Carrier Mobility: A Multiscale Modeling Approach for Device Geometry Optimization of VS-DRAM Dual-Gate Access Transistors\",\"authors\":\"Jun Deng;Xinhe Wang;Yangyi Ou;Z. Bai;Tun Wang;Xiaomeng Liu;Mingli Liu;Qi Hu;Xiangsheng Wang;Guilei Wang;Chao Zhao\",\"doi\":\"10.1109/TED.2024.3493066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the pursuit of advancing memory density, the vertically stacked dynamic random-access memory (VS-DRAM) architecture shows promise but encounters significant obstacles. This study focuses on optimizing the device geometry of VS-DRAM access transistors to achieve a delicate balance between reducing charge loss and maintaining carrier mobility. We developed a robust modeling methodology to quantify both the charge loss induced by the floating body effect (FBE) and the carrier mobility limited by surface roughness (SR). Our investigation carefully examines how thinning the transistor channel can mitigate FBE while avoiding adverse effects on surface scattering of charge carriers, all while considering the emerging geometry confinement effect. Through meticulous analysis, we aim to identify the optimal channel thickness range for VS-DRAM transistors, offering essential insights for the advancement of high-density memory technologies.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 1\",\"pages\":\"199-205\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752092/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10752092/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在追求提高内存密度的过程中,垂直堆叠动态随机存取存储器(VS-DRAM)架构显示出前景,但遇到了重大障碍。本研究的重点是优化VS-DRAM存取电晶体的器件几何结构,以达到减少电荷损耗和保持载流子迁移率之间的微妙平衡。我们开发了一种强大的建模方法来量化由浮体效应(FBE)引起的电荷损失和受表面粗糙度(SR)限制的载流子迁移率。我们的研究仔细研究了如何减薄晶体管通道可以减轻FBE,同时避免对载流子表面散射的不利影响,同时考虑到新兴的几何约束效应。通过细致的分析,我们的目标是确定VS-DRAM晶体管的最佳通道厚度范围,为高密度存储技术的进步提供重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balancing Charge Loss and Carrier Mobility: A Multiscale Modeling Approach for Device Geometry Optimization of VS-DRAM Dual-Gate Access Transistors
In the pursuit of advancing memory density, the vertically stacked dynamic random-access memory (VS-DRAM) architecture shows promise but encounters significant obstacles. This study focuses on optimizing the device geometry of VS-DRAM access transistors to achieve a delicate balance between reducing charge loss and maintaining carrier mobility. We developed a robust modeling methodology to quantify both the charge loss induced by the floating body effect (FBE) and the carrier mobility limited by surface roughness (SR). Our investigation carefully examines how thinning the transistor channel can mitigate FBE while avoiding adverse effects on surface scattering of charge carriers, all while considering the emerging geometry confinement effect. Through meticulous analysis, we aim to identify the optimal channel thickness range for VS-DRAM transistors, offering essential insights for the advancement of high-density memory technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信