Yang Shen;Zhoujie Pan;Mengge Jin;Jintian Gao;Yabin Sun;He Tian;Tian-Ling Ren
{"title":"基于rram的矢量乘法和超高面积效率的多比特存储单器件","authors":"Yang Shen;Zhoujie Pan;Mengge Jin;Jintian Gao;Yabin Sun;He Tian;Tian-Ling Ren","doi":"10.1109/TED.2024.3508666","DOIUrl":null,"url":null,"abstract":"Considering that Von Neumann architecture has bottlenecks in both speed and power consumption, in-memory computation is a promising solution. The in-memory computation needs to be carried out in an array composed of storage units, which can be resistive random access memory (RRAM). When using RRAMs, the data storage density can be increased by taking advantage of their multiresistive state characteristics. However, the lack of reliability is a common problem of RRAM, and it is difficult to realize high long range cyclic characteristics purely from the principle. In this work, a new 3-D device based on RRAM is proposed, which is able to realize 2-bit vector multiplication and multibit storage. Analysis and SPICE simulation are conducted to validate the feasibility. The proposed device does not need to join the write-checking process and can greatly promote the improvement of area, storage density, and operation speed, providing a new route for the future in-memory computing. Compared to traditional CMOS circuits used for vector multiplication, our proposed device can achieve 93.75% reduction in terms of number of devices.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"266-270"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RRAM-Based Single Device for Vector Multiplication and Multibit Storage With Ultrahigh Area Efficiency\",\"authors\":\"Yang Shen;Zhoujie Pan;Mengge Jin;Jintian Gao;Yabin Sun;He Tian;Tian-Ling Ren\",\"doi\":\"10.1109/TED.2024.3508666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering that Von Neumann architecture has bottlenecks in both speed and power consumption, in-memory computation is a promising solution. The in-memory computation needs to be carried out in an array composed of storage units, which can be resistive random access memory (RRAM). When using RRAMs, the data storage density can be increased by taking advantage of their multiresistive state characteristics. However, the lack of reliability is a common problem of RRAM, and it is difficult to realize high long range cyclic characteristics purely from the principle. In this work, a new 3-D device based on RRAM is proposed, which is able to realize 2-bit vector multiplication and multibit storage. Analysis and SPICE simulation are conducted to validate the feasibility. The proposed device does not need to join the write-checking process and can greatly promote the improvement of area, storage density, and operation speed, providing a new route for the future in-memory computing. Compared to traditional CMOS circuits used for vector multiplication, our proposed device can achieve 93.75% reduction in terms of number of devices.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 1\",\"pages\":\"266-270\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10778055/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10778055/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
RRAM-Based Single Device for Vector Multiplication and Multibit Storage With Ultrahigh Area Efficiency
Considering that Von Neumann architecture has bottlenecks in both speed and power consumption, in-memory computation is a promising solution. The in-memory computation needs to be carried out in an array composed of storage units, which can be resistive random access memory (RRAM). When using RRAMs, the data storage density can be increased by taking advantage of their multiresistive state characteristics. However, the lack of reliability is a common problem of RRAM, and it is difficult to realize high long range cyclic characteristics purely from the principle. In this work, a new 3-D device based on RRAM is proposed, which is able to realize 2-bit vector multiplication and multibit storage. Analysis and SPICE simulation are conducted to validate the feasibility. The proposed device does not need to join the write-checking process and can greatly promote the improvement of area, storage density, and operation speed, providing a new route for the future in-memory computing. Compared to traditional CMOS circuits used for vector multiplication, our proposed device can achieve 93.75% reduction in terms of number of devices.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.