Bin Yao, Siyuan He, Run Wang, Yihang Zeng, Wenxuan Shi, Yaxuan Zhu, Xinwei Xu, Shaowei Wang, Qing Wang, Hong Wang
{"title":"受头足类启发的软复合材料与可调红外调制的液态金属内含物","authors":"Bin Yao, Siyuan He, Run Wang, Yihang Zeng, Wenxuan Shi, Yaxuan Zhu, Xinwei Xu, Shaowei Wang, Qing Wang, Hong Wang","doi":"10.1016/j.jmat.2025.101012","DOIUrl":null,"url":null,"abstract":"Artificial adaptive soft infrared (IR) materials, mimicking the color-changing abilities observed in soft organisms such as cephalopods, hold significant promise in various emerging technologies, including unconventional flexible displays, intelligent camouflage systems, and advanced sensors. In this study, we integrated inherently deformable liquid metal (LM) microdroplets randomly into an elastomer matrix, creating a fully soft material that exhibits elastic compliance akin to soft biological tissue and adaptive IR-reflecting properties in response to compression. Under compressive strains, each LM inclusion behaves as a unit of dynamic IR reflector, transitioning between a contracted droplet with a corrugated surface and an expanded plate-like filler with a relatively smooth surface. These alterations in shape, size, and surface structure allow dynamic modulation of incident IR radiation’s reflection, resulting in reversible changes in IR color (<em>i.e.</em>, detected temperature). This mechanism replicates the dynamic alterations observed in cephalopod skin, where chromatophores dynamically manipulate visible light reflection by changing their size and morphology. We demonstrate proof-of-concept applications of this material, showing its ability to modify IR appearance through compression for visualization, with its localized color-change mechanism enabling its use as a tactile sensor in vision-based tactile grippers. These illustrate the potential of this material in emerging adaptive flexible electronics.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"24 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cephalopod-inspired soft composite with liquid metal inclusions for tunable infrared modulation\",\"authors\":\"Bin Yao, Siyuan He, Run Wang, Yihang Zeng, Wenxuan Shi, Yaxuan Zhu, Xinwei Xu, Shaowei Wang, Qing Wang, Hong Wang\",\"doi\":\"10.1016/j.jmat.2025.101012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial adaptive soft infrared (IR) materials, mimicking the color-changing abilities observed in soft organisms such as cephalopods, hold significant promise in various emerging technologies, including unconventional flexible displays, intelligent camouflage systems, and advanced sensors. In this study, we integrated inherently deformable liquid metal (LM) microdroplets randomly into an elastomer matrix, creating a fully soft material that exhibits elastic compliance akin to soft biological tissue and adaptive IR-reflecting properties in response to compression. Under compressive strains, each LM inclusion behaves as a unit of dynamic IR reflector, transitioning between a contracted droplet with a corrugated surface and an expanded plate-like filler with a relatively smooth surface. These alterations in shape, size, and surface structure allow dynamic modulation of incident IR radiation’s reflection, resulting in reversible changes in IR color (<em>i.e.</em>, detected temperature). This mechanism replicates the dynamic alterations observed in cephalopod skin, where chromatophores dynamically manipulate visible light reflection by changing their size and morphology. We demonstrate proof-of-concept applications of this material, showing its ability to modify IR appearance through compression for visualization, with its localized color-change mechanism enabling its use as a tactile sensor in vision-based tactile grippers. These illustrate the potential of this material in emerging adaptive flexible electronics.\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmat.2025.101012\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cephalopod-inspired soft composite with liquid metal inclusions for tunable infrared modulation
Artificial adaptive soft infrared (IR) materials, mimicking the color-changing abilities observed in soft organisms such as cephalopods, hold significant promise in various emerging technologies, including unconventional flexible displays, intelligent camouflage systems, and advanced sensors. In this study, we integrated inherently deformable liquid metal (LM) microdroplets randomly into an elastomer matrix, creating a fully soft material that exhibits elastic compliance akin to soft biological tissue and adaptive IR-reflecting properties in response to compression. Under compressive strains, each LM inclusion behaves as a unit of dynamic IR reflector, transitioning between a contracted droplet with a corrugated surface and an expanded plate-like filler with a relatively smooth surface. These alterations in shape, size, and surface structure allow dynamic modulation of incident IR radiation’s reflection, resulting in reversible changes in IR color (i.e., detected temperature). This mechanism replicates the dynamic alterations observed in cephalopod skin, where chromatophores dynamically manipulate visible light reflection by changing their size and morphology. We demonstrate proof-of-concept applications of this material, showing its ability to modify IR appearance through compression for visualization, with its localized color-change mechanism enabling its use as a tactile sensor in vision-based tactile grippers. These illustrate the potential of this material in emerging adaptive flexible electronics.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.