{"title":"基于自适应广义滑模观测器的多智能体系统在执行器和传感器故障情况下的动态事件触发一致性","authors":"Zhengyu Ye;Bin Jiang;Ziquan Yu;Yuehua Cheng","doi":"10.1109/TCYB.2024.3519593","DOIUrl":null,"url":null,"abstract":"Actuator and sensor faults are among the most common factors affecting the stability of multiagent systems (MASs). This article proposes a dynamic event-triggered fault-tolerant control (FTC) algorithm based on descriptor sliding-mode observers to address actuator and sensor faults in MASs. First, the MAS dynamics are reformulated into a descriptor form, enabling an observer to simultaneously achieve state estimation and fault diagnosis. Using the estimation results, an adaptive FTC algorithm is developed to maintain the stability of MASs in the presence of concurrent faults, with control gains updated based on the observer consensus error. A dynamic event-triggered mechanism is incorporated to manage data transmission and update neighboring agents’ information for the controller, thereby reducing communication overhead. Finally, a numerical simulation involving multiple quadrotors is conducted to validate the effectiveness of the proposed method.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 2","pages":"672-683"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Descriptor Sliding-Mode Observer-Based Dynamic Event-Triggered Consensus of Multiagent Systems Against Actuator and Sensor Faults\",\"authors\":\"Zhengyu Ye;Bin Jiang;Ziquan Yu;Yuehua Cheng\",\"doi\":\"10.1109/TCYB.2024.3519593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Actuator and sensor faults are among the most common factors affecting the stability of multiagent systems (MASs). This article proposes a dynamic event-triggered fault-tolerant control (FTC) algorithm based on descriptor sliding-mode observers to address actuator and sensor faults in MASs. First, the MAS dynamics are reformulated into a descriptor form, enabling an observer to simultaneously achieve state estimation and fault diagnosis. Using the estimation results, an adaptive FTC algorithm is developed to maintain the stability of MASs in the presence of concurrent faults, with control gains updated based on the observer consensus error. A dynamic event-triggered mechanism is incorporated to manage data transmission and update neighboring agents’ information for the controller, thereby reducing communication overhead. Finally, a numerical simulation involving multiple quadrotors is conducted to validate the effectiveness of the proposed method.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 2\",\"pages\":\"672-683\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820961/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10820961/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Adaptive Descriptor Sliding-Mode Observer-Based Dynamic Event-Triggered Consensus of Multiagent Systems Against Actuator and Sensor Faults
Actuator and sensor faults are among the most common factors affecting the stability of multiagent systems (MASs). This article proposes a dynamic event-triggered fault-tolerant control (FTC) algorithm based on descriptor sliding-mode observers to address actuator and sensor faults in MASs. First, the MAS dynamics are reformulated into a descriptor form, enabling an observer to simultaneously achieve state estimation and fault diagnosis. Using the estimation results, an adaptive FTC algorithm is developed to maintain the stability of MASs in the presence of concurrent faults, with control gains updated based on the observer consensus error. A dynamic event-triggered mechanism is incorporated to manage data transmission and update neighboring agents’ information for the controller, thereby reducing communication overhead. Finally, a numerical simulation involving multiple quadrotors is conducted to validate the effectiveness of the proposed method.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.