{"title":"E-MAC:通过数字时间调制增强sram内MAC精度","authors":"Saeed Seyedfaraji;Salar Shakibhamedan;Amire Seyedfaraji;Baset Mesgari;Nima Taherinejad;Axel Jantsch;Semeen Rehman","doi":"10.1109/JXCDC.2024.3518633","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a novel technique called E-multiplication and accumulation (MAC) (EMAC), aimed at enhancing energy efficiency, reducing latency, and improving the accuracy of analog-based in-static random access memory (SRAM) MAC accelerators. Our approach involves a digital-to-time word-line (WL) modulation technique that encodes the WL voltage while preserving the necessary linear voltage drop for precise computations. This eliminates the need for an additional digital-to-analog converter (DAC) in the design. Furthermore, the SRAM-based logical weight encoding scheme we present reduces the reliance on capacitance-based techniques, which typically introduce area overhead in the circuit. This approach ensures consistent voltage drops for all equivalent cases [i.e., \n<inline-formula> <tex-math>$(a { \\times} b) = (b \\times a)$ </tex-math></inline-formula>\n], addressing a persistent issue in existing state-of-the-art methods. Compared with state-of-the-art analog-based in-SRAM techniques, our E-MAC approach demonstrates significant energy savings (\n<inline-formula> <tex-math>$1.89\\times $ </tex-math></inline-formula>\n) and improved accuracy (73.25%) per MAC computation from a 1-V power supply, while achieving a \n<inline-formula> <tex-math>$11.84\\times $ </tex-math></inline-formula>\n energy efficiency improvement over baseline digital approaches. Our application analysis shows a marginal overall reduction in accuracy, i.e., a 0.1% and 0.17% reduction for LeNet5-based CNN and VGG16, respectively, when trained on the MNIST and ImageNet datasets.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"178-186"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804123","citationCount":"0","resultStr":"{\"title\":\"E-MAC: Enhanced In-SRAM MAC Accuracy via Digital-to-Time Modulation\",\"authors\":\"Saeed Seyedfaraji;Salar Shakibhamedan;Amire Seyedfaraji;Baset Mesgari;Nima Taherinejad;Axel Jantsch;Semeen Rehman\",\"doi\":\"10.1109/JXCDC.2024.3518633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce a novel technique called E-multiplication and accumulation (MAC) (EMAC), aimed at enhancing energy efficiency, reducing latency, and improving the accuracy of analog-based in-static random access memory (SRAM) MAC accelerators. Our approach involves a digital-to-time word-line (WL) modulation technique that encodes the WL voltage while preserving the necessary linear voltage drop for precise computations. This eliminates the need for an additional digital-to-analog converter (DAC) in the design. Furthermore, the SRAM-based logical weight encoding scheme we present reduces the reliance on capacitance-based techniques, which typically introduce area overhead in the circuit. This approach ensures consistent voltage drops for all equivalent cases [i.e., \\n<inline-formula> <tex-math>$(a { \\\\times} b) = (b \\\\times a)$ </tex-math></inline-formula>\\n], addressing a persistent issue in existing state-of-the-art methods. Compared with state-of-the-art analog-based in-SRAM techniques, our E-MAC approach demonstrates significant energy savings (\\n<inline-formula> <tex-math>$1.89\\\\times $ </tex-math></inline-formula>\\n) and improved accuracy (73.25%) per MAC computation from a 1-V power supply, while achieving a \\n<inline-formula> <tex-math>$11.84\\\\times $ </tex-math></inline-formula>\\n energy efficiency improvement over baseline digital approaches. Our application analysis shows a marginal overall reduction in accuracy, i.e., a 0.1% and 0.17% reduction for LeNet5-based CNN and VGG16, respectively, when trained on the MNIST and ImageNet datasets.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":\"10 \",\"pages\":\"178-186\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804123\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804123/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804123/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们介绍了一种称为e乘法和积累(MAC) (EMAC)的新技术,旨在提高基于模拟的静态随机存取存储器(SRAM) MAC加速器的能源效率、减少延迟和提高准确性。我们的方法涉及一种数字到时间字线(WL)调制技术,该技术对WL电压进行编码,同时保留精确计算所需的线性压降。这消除了在设计中需要额外的数模转换器(DAC)。此外,我们提出的基于sram的逻辑权重编码方案减少了对基于电容的技术的依赖,这些技术通常会在电路中引入面积开销。这种方法确保了所有等效情况下的一致电压降[即,$(a {\times} b) = (b \times a)$],解决了现有最先进方法中持续存在的问题。与最先进的基于模拟的sram技术相比,我们的E-MAC方法在1 v电源的每个MAC计算中显示出显着的节能(1.89美元)和提高的精度(73.25%),同时实现了11.84美元的能源效率提高。我们的应用分析显示,当在MNIST和ImageNet数据集上训练时,基于lenet5的CNN和基于VGG16的准确率分别降低了0.1%和0.17%。
E-MAC: Enhanced In-SRAM MAC Accuracy via Digital-to-Time Modulation
In this article, we introduce a novel technique called E-multiplication and accumulation (MAC) (EMAC), aimed at enhancing energy efficiency, reducing latency, and improving the accuracy of analog-based in-static random access memory (SRAM) MAC accelerators. Our approach involves a digital-to-time word-line (WL) modulation technique that encodes the WL voltage while preserving the necessary linear voltage drop for precise computations. This eliminates the need for an additional digital-to-analog converter (DAC) in the design. Furthermore, the SRAM-based logical weight encoding scheme we present reduces the reliance on capacitance-based techniques, which typically introduce area overhead in the circuit. This approach ensures consistent voltage drops for all equivalent cases [i.e.,
$(a { \times} b) = (b \times a)$
], addressing a persistent issue in existing state-of-the-art methods. Compared with state-of-the-art analog-based in-SRAM techniques, our E-MAC approach demonstrates significant energy savings (
$1.89\times $
) and improved accuracy (73.25%) per MAC computation from a 1-V power supply, while achieving a
$11.84\times $
energy efficiency improvement over baseline digital approaches. Our application analysis shows a marginal overall reduction in accuracy, i.e., a 0.1% and 0.17% reduction for LeNet5-based CNN and VGG16, respectively, when trained on the MNIST and ImageNet datasets.