Dun-Bao Ruan;Kuei-Shu Chang-Liao;Huan Wu;Fu-Yang Chu;Po-Chun Wu;Zefu Zhao;Kai-Jhih Gan
{"title":"氢臭氧混合等离子体预处理修饰Ge nMOSFET栅极介质氧化态","authors":"Dun-Bao Ruan;Kuei-Shu Chang-Liao;Huan Wu;Fu-Yang Chu;Po-Chun Wu;Zefu Zhao;Kai-Jhih Gan","doi":"10.1109/TED.2024.3508669","DOIUrl":null,"url":null,"abstract":"An ozone-based plasma pretreatment was proposed to reduce the oxygen vacancy and unstable germanium (Ge) suboxide (GeO\n<inline-formula> <tex-math>$_{x}\\text {)}$ </tex-math></inline-formula>\n at lower interface of interfacial layer (IL). With higher oxidizing ability of ozone and lower plasma damage in process, the formation of unstable GeOx at lower interface of IL can be effectively suppressed. The devices with a mixed hydrogen and ozone plasma (MHOP) pretreatment exhibit an ultrathin equivalent oxide thickness (EOT) of 0.57 nm, a fairly acceptable gate leakage current density of \n<inline-formula> <tex-math>$3 \\times 10^{-{3}}$ </tex-math></inline-formula>\n A/cm2, lower interface trap density of \n<inline-formula> <tex-math>$10^{{11}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{2}}\\cdot $ </tex-math></inline-formula>\neV\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\n, and fewer border traps in Ge MOS capacitor. Also, a higher driver current of 1.4 mA, a lower subthreshold swing (SS) of 113 mV/dec, and higher on/off current ratio of \n<inline-formula> <tex-math>$3.2 \\times 10^{{3}}$ </tex-math></inline-formula>\n for Ge MOSFET can be achieved with an MHOP treatment.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"57-61"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidation State Modification in Gate Dielectric for Ge nMOSFET With Mixed Hydrogen and Ozone Plasma Pretreatments\",\"authors\":\"Dun-Bao Ruan;Kuei-Shu Chang-Liao;Huan Wu;Fu-Yang Chu;Po-Chun Wu;Zefu Zhao;Kai-Jhih Gan\",\"doi\":\"10.1109/TED.2024.3508669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ozone-based plasma pretreatment was proposed to reduce the oxygen vacancy and unstable germanium (Ge) suboxide (GeO\\n<inline-formula> <tex-math>$_{x}\\\\text {)}$ </tex-math></inline-formula>\\n at lower interface of interfacial layer (IL). With higher oxidizing ability of ozone and lower plasma damage in process, the formation of unstable GeOx at lower interface of IL can be effectively suppressed. The devices with a mixed hydrogen and ozone plasma (MHOP) pretreatment exhibit an ultrathin equivalent oxide thickness (EOT) of 0.57 nm, a fairly acceptable gate leakage current density of \\n<inline-formula> <tex-math>$3 \\\\times 10^{-{3}}$ </tex-math></inline-formula>\\n A/cm2, lower interface trap density of \\n<inline-formula> <tex-math>$10^{{11}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{2}}\\\\cdot $ </tex-math></inline-formula>\\neV\\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\\n, and fewer border traps in Ge MOS capacitor. Also, a higher driver current of 1.4 mA, a lower subthreshold swing (SS) of 113 mV/dec, and higher on/off current ratio of \\n<inline-formula> <tex-math>$3.2 \\\\times 10^{{3}}$ </tex-math></inline-formula>\\n for Ge MOSFET can be achieved with an MHOP treatment.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 1\",\"pages\":\"57-61\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10776758/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10776758/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
为了减少界面层(IL)下界面的氧空位和不稳定的锗(Ge)亚氧化物(GeO $_{x}\text{)}$,提出了臭氧等离子体预处理方法。由于具有较高的臭氧氧化能力和较低的等离子体损伤,可以有效地抑制IL下界面不稳定GeOx的形成。采用混合氢臭氧等离子体(MHOP)预处理的器件具有0.57 nm的超薄等效氧化物厚度(EOT)、3 \ × 10^{-{3}}$ a /cm2的栅极漏电流密度、10^{{11}}$ cm $^{-{2}}\cdot $ eV $^{-{1}}$较低的界面阱密度和较少的边界阱。此外,通过MHOP处理,可以实现更高的驱动电流1.4 mA,更低的亚阈值摆幅(SS)为113 mV/dec,以及更高的开/关电流比为3.2 \ × 10^{{3}}$。
Oxidation State Modification in Gate Dielectric for Ge nMOSFET With Mixed Hydrogen and Ozone Plasma Pretreatments
An ozone-based plasma pretreatment was proposed to reduce the oxygen vacancy and unstable germanium (Ge) suboxide (GeO
$_{x}\text {)}$
at lower interface of interfacial layer (IL). With higher oxidizing ability of ozone and lower plasma damage in process, the formation of unstable GeOx at lower interface of IL can be effectively suppressed. The devices with a mixed hydrogen and ozone plasma (MHOP) pretreatment exhibit an ultrathin equivalent oxide thickness (EOT) of 0.57 nm, a fairly acceptable gate leakage current density of
$3 \times 10^{-{3}}$
A/cm2, lower interface trap density of
$10^{{11}}$
cm
$^{-{2}}\cdot $
eV
$^{-{1}}$
, and fewer border traps in Ge MOS capacitor. Also, a higher driver current of 1.4 mA, a lower subthreshold swing (SS) of 113 mV/dec, and higher on/off current ratio of
$3.2 \times 10^{{3}}$
for Ge MOSFET can be achieved with an MHOP treatment.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.