{"title":"图注意,学习2-opt算法求解旅行商问题","authors":"Jia Luo, Herui Heng, Geng Wu","doi":"10.1007/s40747-024-01716-5","DOIUrl":null,"url":null,"abstract":"<p>In recent years, deep graph neural networks (GNNs) have been used as solvers or helper functions for the traveling salesman problem (TSP), but they are usually used as encoders to generate static node representations for downstream tasks and are incapable of obtaining the dynamic permutational information in completely updating solutions. For addressing this problem, we propose a permutational encoding graph attention encoder and attention-based decoder (PEG2A) model for the TSP that is trained by the advantage actor-critic algorithm. In this work, the permutational encoding graph attention (PEGAT) network is designed to encode node embeddings for gathering information from neighbors and obtaining the dynamic graph permutational information simultaneously. The attention-based decoder is tailored to compute probability distributions over picking pair nodes for 2-opt moves. The experimental results show that our method outperforms the compared learning-based algorithms and traditional heuristic methods.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"17 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph attention, learning 2-opt algorithm for the traveling salesman problem\",\"authors\":\"Jia Luo, Herui Heng, Geng Wu\",\"doi\":\"10.1007/s40747-024-01716-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, deep graph neural networks (GNNs) have been used as solvers or helper functions for the traveling salesman problem (TSP), but they are usually used as encoders to generate static node representations for downstream tasks and are incapable of obtaining the dynamic permutational information in completely updating solutions. For addressing this problem, we propose a permutational encoding graph attention encoder and attention-based decoder (PEG2A) model for the TSP that is trained by the advantage actor-critic algorithm. In this work, the permutational encoding graph attention (PEGAT) network is designed to encode node embeddings for gathering information from neighbors and obtaining the dynamic graph permutational information simultaneously. The attention-based decoder is tailored to compute probability distributions over picking pair nodes for 2-opt moves. The experimental results show that our method outperforms the compared learning-based algorithms and traditional heuristic methods.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01716-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01716-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Graph attention, learning 2-opt algorithm for the traveling salesman problem
In recent years, deep graph neural networks (GNNs) have been used as solvers or helper functions for the traveling salesman problem (TSP), but they are usually used as encoders to generate static node representations for downstream tasks and are incapable of obtaining the dynamic permutational information in completely updating solutions. For addressing this problem, we propose a permutational encoding graph attention encoder and attention-based decoder (PEG2A) model for the TSP that is trained by the advantage actor-critic algorithm. In this work, the permutational encoding graph attention (PEGAT) network is designed to encode node embeddings for gathering information from neighbors and obtaining the dynamic graph permutational information simultaneously. The attention-based decoder is tailored to compute probability distributions over picking pair nodes for 2-opt moves. The experimental results show that our method outperforms the compared learning-based algorithms and traditional heuristic methods.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.