{"title":"低电压层状结构下铁电HfO2-ZrO2的超快开关","authors":"Yifan Song;Jiajie Yu;Zhuming Wang;Kangli Xu;Yongkai Liu;Chen Wang;Kun Chen;Qingqing Sun;David Wei Zhang;Lin Chen","doi":"10.1109/LED.2024.3487169","DOIUrl":null,"url":null,"abstract":"Ferroelectric (FE) Hf\n<inline-formula> <tex-math>$_{\\text {1-x}}$ </tex-math></inline-formula>\nZrxO2 (HZO) thin films have attracted considerable interest for their potential application in Ferroelectric Random-Access Memory (FeRAM) and Ferroelectric Field-Effect Transistors (FeFET), owing to their high dielectric constant, stability, and compatibility with CMOS processes. However, enhancing the polarization switching speed of HZO thin films remains a significant challenge. In this study, we successfully reduced the coercive field and improved the switching speed of HZO devices by integrating ferroelectric and antiferroelectric layers. We employed a high-speed pulsed measurement system with sub-nanosecond resolution to evaluate the switching speed of these devices. An ultrafast switching time of 780 ps at 2V was achieved, as supported by the nucleation-limited switching model. This work demonstrates a promising strategy for enhancing the switching speed in HZO films through structural engineering, offering valuable insights for practical device applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 1","pages":"12-15"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Switching of Ferroelectric HfO2-ZrO2 Under Low Voltage With Layered Structure\",\"authors\":\"Yifan Song;Jiajie Yu;Zhuming Wang;Kangli Xu;Yongkai Liu;Chen Wang;Kun Chen;Qingqing Sun;David Wei Zhang;Lin Chen\",\"doi\":\"10.1109/LED.2024.3487169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferroelectric (FE) Hf\\n<inline-formula> <tex-math>$_{\\\\text {1-x}}$ </tex-math></inline-formula>\\nZrxO2 (HZO) thin films have attracted considerable interest for their potential application in Ferroelectric Random-Access Memory (FeRAM) and Ferroelectric Field-Effect Transistors (FeFET), owing to their high dielectric constant, stability, and compatibility with CMOS processes. However, enhancing the polarization switching speed of HZO thin films remains a significant challenge. In this study, we successfully reduced the coercive field and improved the switching speed of HZO devices by integrating ferroelectric and antiferroelectric layers. We employed a high-speed pulsed measurement system with sub-nanosecond resolution to evaluate the switching speed of these devices. An ultrafast switching time of 780 ps at 2V was achieved, as supported by the nucleation-limited switching model. This work demonstrates a promising strategy for enhancing the switching speed in HZO films through structural engineering, offering valuable insights for practical device applications.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 1\",\"pages\":\"12-15\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10737232/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10737232/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ultrafast Switching of Ferroelectric HfO2-ZrO2 Under Low Voltage With Layered Structure
Ferroelectric (FE) Hf
$_{\text {1-x}}$
ZrxO2 (HZO) thin films have attracted considerable interest for their potential application in Ferroelectric Random-Access Memory (FeRAM) and Ferroelectric Field-Effect Transistors (FeFET), owing to their high dielectric constant, stability, and compatibility with CMOS processes. However, enhancing the polarization switching speed of HZO thin films remains a significant challenge. In this study, we successfully reduced the coercive field and improved the switching speed of HZO devices by integrating ferroelectric and antiferroelectric layers. We employed a high-speed pulsed measurement system with sub-nanosecond resolution to evaluate the switching speed of these devices. An ultrafast switching time of 780 ps at 2V was achieved, as supported by the nucleation-limited switching model. This work demonstrates a promising strategy for enhancing the switching speed in HZO films through structural engineering, offering valuable insights for practical device applications.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.