{"title":"从一致性到一致性,评估基于标准分级的大型语言模型。","authors":"Da-Wei Zhang, Melissa Boey, Yan Yu Tan, Alexis Hoh Sheng Jia","doi":"10.1038/s41539-024-00291-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the ability of large language models (LLMs) to deliver criterion-based grading and examines the impact of prompt engineering with detailed criteria on grading. Using well-established human benchmarks and quantitative analyses, we found that even free LLMs achieve criterion-based grading with a detailed understanding of the criteria, underscoring the importance of domain-specific understanding over model complexity. These findings highlight the potential of LLMs to deliver scalable educational feedback.</p>","PeriodicalId":48503,"journal":{"name":"npj Science of Learning","volume":"9 1","pages":"79"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683144/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating large language models for criterion-based grading from agreement to consistency.\",\"authors\":\"Da-Wei Zhang, Melissa Boey, Yan Yu Tan, Alexis Hoh Sheng Jia\",\"doi\":\"10.1038/s41539-024-00291-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the ability of large language models (LLMs) to deliver criterion-based grading and examines the impact of prompt engineering with detailed criteria on grading. Using well-established human benchmarks and quantitative analyses, we found that even free LLMs achieve criterion-based grading with a detailed understanding of the criteria, underscoring the importance of domain-specific understanding over model complexity. These findings highlight the potential of LLMs to deliver scalable educational feedback.</p>\",\"PeriodicalId\":48503,\"journal\":{\"name\":\"npj Science of Learning\",\"volume\":\"9 1\",\"pages\":\"79\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683144/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Science of Learning\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1038/s41539-024-00291-1\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Science of Learning","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41539-024-00291-1","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Evaluating large language models for criterion-based grading from agreement to consistency.
This study evaluates the ability of large language models (LLMs) to deliver criterion-based grading and examines the impact of prompt engineering with detailed criteria on grading. Using well-established human benchmarks and quantitative analyses, we found that even free LLMs achieve criterion-based grading with a detailed understanding of the criteria, underscoring the importance of domain-specific understanding over model complexity. These findings highlight the potential of LLMs to deliver scalable educational feedback.