{"title":"设计层状氧化物作为钠离子电池的阴极:基于机器学习和密度泛函理论的建模","authors":"Nishant Mishra , Rajdeep Boral , Tanmoy Paul","doi":"10.1016/j.mtphys.2024.101634","DOIUrl":null,"url":null,"abstract":"<div><div>To accelerate the application of Na-ion batteries in electric vehicles, it is necessary to develop new materials with high average voltage (AV). P2 and O3-type sodium layered oxides (Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>TMO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) have been identified as cathodes for sodium-ion batteries with faster Na diffusion and high-rate kinetics for the former. However, a low capacity at the initial stage limits their application. To overcome the issue dual doping of 3d transition metals (TMs) with an equal ratio strategy is employed with the help of combined machine learning (ML) with density functional theory (DFT) calculations and AV of candidate compounds are predicted from a smaller dataset of 650 compounds. Both physical and electronic descriptors of elements for each compound are utilized for ML model training. The evaluation coefficient (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>) and root mean squared error (RMSE) of the XGBoost model were up to 0.85 and 0.41 respectively to predict the AV during testing of the model. Seven novel quaternary (Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>TM1<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>TM2<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> namely Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) and pentanary compounds (Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>TM1<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>TM2<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span> namely Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Ni<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>) were identified from the XGBoost model to exhibit AV between 2.8 to 4.4 V. Thereafter, the AV as predicted by ML model was verified by DFT calculations and the maximum and minimum errors are obtained between 15 - 3 % respectively. The phase stability, electronic structures, magnetic properties, dynamic stability and activation energy for diffusion are studied by DFT and AIMD techniques. Nevertheless, our approach could significantly accelerate the discovery of novel cathodes and provide valuable insights for the study of intercalating materials.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"51 ","pages":"Article 101634"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing layered oxides as cathodes for sodium-ion batteries: Machine learning and density functional theory based modeling\",\"authors\":\"Nishant Mishra , Rajdeep Boral , Tanmoy Paul\",\"doi\":\"10.1016/j.mtphys.2024.101634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To accelerate the application of Na-ion batteries in electric vehicles, it is necessary to develop new materials with high average voltage (AV). P2 and O3-type sodium layered oxides (Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>TMO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) have been identified as cathodes for sodium-ion batteries with faster Na diffusion and high-rate kinetics for the former. However, a low capacity at the initial stage limits their application. To overcome the issue dual doping of 3d transition metals (TMs) with an equal ratio strategy is employed with the help of combined machine learning (ML) with density functional theory (DFT) calculations and AV of candidate compounds are predicted from a smaller dataset of 650 compounds. Both physical and electronic descriptors of elements for each compound are utilized for ML model training. The evaluation coefficient (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>) and root mean squared error (RMSE) of the XGBoost model were up to 0.85 and 0.41 respectively to predict the AV during testing of the model. Seven novel quaternary (Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>TM1<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>TM2<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> namely Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) and pentanary compounds (Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>TM1<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>TM2<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span> namely Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Ni<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>) were identified from the XGBoost model to exhibit AV between 2.8 to 4.4 V. Thereafter, the AV as predicted by ML model was verified by DFT calculations and the maximum and minimum errors are obtained between 15 - 3 % respectively. The phase stability, electronic structures, magnetic properties, dynamic stability and activation energy for diffusion are studied by DFT and AIMD techniques. Nevertheless, our approach could significantly accelerate the discovery of novel cathodes and provide valuable insights for the study of intercalating materials.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"51 \",\"pages\":\"Article 101634\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324003109\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324003109","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing layered oxides as cathodes for sodium-ion batteries: Machine learning and density functional theory based modeling
To accelerate the application of Na-ion batteries in electric vehicles, it is necessary to develop new materials with high average voltage (AV). P2 and O3-type sodium layered oxides (NaTMO) have been identified as cathodes for sodium-ion batteries with faster Na diffusion and high-rate kinetics for the former. However, a low capacity at the initial stage limits their application. To overcome the issue dual doping of 3d transition metals (TMs) with an equal ratio strategy is employed with the help of combined machine learning (ML) with density functional theory (DFT) calculations and AV of candidate compounds are predicted from a smaller dataset of 650 compounds. Both physical and electronic descriptors of elements for each compound are utilized for ML model training. The evaluation coefficient (R) and root mean squared error (RMSE) of the XGBoost model were up to 0.85 and 0.41 respectively to predict the AV during testing of the model. Seven novel quaternary (NaTM1TM2O namely NaTiFeO, NaTiCrO, NaVFeO) and pentanary compounds (NaTM1TM2OF namely NaTiCrOF, NaTiFeOF, NaTiVOF, NaTiNiOF) were identified from the XGBoost model to exhibit AV between 2.8 to 4.4 V. Thereafter, the AV as predicted by ML model was verified by DFT calculations and the maximum and minimum errors are obtained between 15 - 3 % respectively. The phase stability, electronic structures, magnetic properties, dynamic stability and activation energy for diffusion are studied by DFT and AIMD techniques. Nevertheless, our approach could significantly accelerate the discovery of novel cathodes and provide valuable insights for the study of intercalating materials.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.