设计层状氧化物作为钠离子电池的阴极:基于机器学习和密度泛函理论的建模

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nishant Mishra , Rajdeep Boral , Tanmoy Paul
{"title":"设计层状氧化物作为钠离子电池的阴极:基于机器学习和密度泛函理论的建模","authors":"Nishant Mishra ,&nbsp;Rajdeep Boral ,&nbsp;Tanmoy Paul","doi":"10.1016/j.mtphys.2024.101634","DOIUrl":null,"url":null,"abstract":"<div><div>To accelerate the application of Na-ion batteries in electric vehicles, it is necessary to develop new materials with high average voltage (AV). P2 and O3-type sodium layered oxides (Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>TMO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) have been identified as cathodes for sodium-ion batteries with faster Na diffusion and high-rate kinetics for the former. However, a low capacity at the initial stage limits their application. To overcome the issue dual doping of 3d transition metals (TMs) with an equal ratio strategy is employed with the help of combined machine learning (ML) with density functional theory (DFT) calculations and AV of candidate compounds are predicted from a smaller dataset of 650 compounds. Both physical and electronic descriptors of elements for each compound are utilized for ML model training. The evaluation coefficient (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>) and root mean squared error (RMSE) of the XGBoost model were up to 0.85 and 0.41 respectively to predict the AV during testing of the model. Seven novel quaternary (Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>TM1<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>TM2<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> namely Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) and pentanary compounds (Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>TM1<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>TM2<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span> namely Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Ni<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>) were identified from the XGBoost model to exhibit AV between 2.8 to 4.4 V. Thereafter, the AV as predicted by ML model was verified by DFT calculations and the maximum and minimum errors are obtained between 15 - 3 % respectively. The phase stability, electronic structures, magnetic properties, dynamic stability and activation energy for diffusion are studied by DFT and AIMD techniques. Nevertheless, our approach could significantly accelerate the discovery of novel cathodes and provide valuable insights for the study of intercalating materials.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"51 ","pages":"Article 101634"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing layered oxides as cathodes for sodium-ion batteries: Machine learning and density functional theory based modeling\",\"authors\":\"Nishant Mishra ,&nbsp;Rajdeep Boral ,&nbsp;Tanmoy Paul\",\"doi\":\"10.1016/j.mtphys.2024.101634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To accelerate the application of Na-ion batteries in electric vehicles, it is necessary to develop new materials with high average voltage (AV). P2 and O3-type sodium layered oxides (Na<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>TMO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) have been identified as cathodes for sodium-ion batteries with faster Na diffusion and high-rate kinetics for the former. However, a low capacity at the initial stage limits their application. To overcome the issue dual doping of 3d transition metals (TMs) with an equal ratio strategy is employed with the help of combined machine learning (ML) with density functional theory (DFT) calculations and AV of candidate compounds are predicted from a smaller dataset of 650 compounds. Both physical and electronic descriptors of elements for each compound are utilized for ML model training. The evaluation coefficient (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>) and root mean squared error (RMSE) of the XGBoost model were up to 0.85 and 0.41 respectively to predict the AV during testing of the model. Seven novel quaternary (Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>TM1<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>TM2<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> namely Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) and pentanary compounds (Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>TM1<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>TM2<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span> namely Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>V<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>, Na<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msub></math></span>Ti<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>Ni<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>944</mn></mrow></msub></math></span>F<span><math><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>056</mn></mrow></msub></math></span>) were identified from the XGBoost model to exhibit AV between 2.8 to 4.4 V. Thereafter, the AV as predicted by ML model was verified by DFT calculations and the maximum and minimum errors are obtained between 15 - 3 % respectively. The phase stability, electronic structures, magnetic properties, dynamic stability and activation energy for diffusion are studied by DFT and AIMD techniques. Nevertheless, our approach could significantly accelerate the discovery of novel cathodes and provide valuable insights for the study of intercalating materials.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"51 \",\"pages\":\"Article 101634\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324003109\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324003109","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了加快钠离子电池在电动汽车上的应用,有必要开发具有高平均电压的新型材料。P2和o3型钠层状氧化物(NaxxTMO22)已被确定为钠离子电池的阴极,前者具有更快的Na扩散和高速率动力学。然而,初始阶段的低容量限制了它们的应用。为了克服这一问题,采用等比策略,结合机器学习(ML)和密度泛函理论(DFT)计算,利用650个化合物的较小数据集预测候选化合物的AV。每种化合物元素的物理和电子描述符都用于ML模型训练。XGBoost模型的评价系数(R22)和均方根误差(RMSE)分别达到0.85和0.41,用于预测模型测试中的AV。七种新型季元化合物(na0.670.67 tm10.50.5 tm20.50.50 o22,即na0.670.67 ti0.50.50 fe0.50.50 o22, na0.670.67 ti0.50.50 tm0.50.50 cr0.50.50 cr0.50.50 o22, na0.670.67 v0.50.50 tm0.50.50 o1.9441.944 f0.0560.056)和五元化合物(na0.670.67 tm10.50.50 tm20.50.50 o1.9441.944 f0.0560.056, na0.670.67 ti0.50.50 ti0.50.50 o1.9441.944 f0.0560.056, na0.670.67 ti0.50.50 v0.50.50 o1.9441.944 f0.0560.056, na0.670.67 ti0.50.50 v0.50.50 o1.9441.944 f0.0560.056,从XGBoost模型中鉴定出na0.670.67 ti0.50.5 ni0.50.50 o1.9441.944 f0.0560.056)的AV值在2.8 ~ 4.4 V之间。然后,通过DFT计算验证了ML模型预测的AV,最大误差和最小误差分别在15 - 3%之间。采用DFT和AIMD技术对其相稳定性、电子结构、磁性、动态稳定性和扩散活化能进行了研究。尽管如此,我们的方法可以显著加速新阴极的发现,并为插层材料的研究提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Designing layered oxides as cathodes for sodium-ion batteries: Machine learning and density functional theory based modeling

Designing layered oxides as cathodes for sodium-ion batteries: Machine learning and density functional theory based modeling

Designing layered oxides as cathodes for sodium-ion batteries: Machine learning and density functional theory based modeling
To accelerate the application of Na-ion batteries in electric vehicles, it is necessary to develop new materials with high average voltage (AV). P2 and O3-type sodium layered oxides (NaxTMO2) have been identified as cathodes for sodium-ion batteries with faster Na diffusion and high-rate kinetics for the former. However, a low capacity at the initial stage limits their application. To overcome the issue dual doping of 3d transition metals (TMs) with an equal ratio strategy is employed with the help of combined machine learning (ML) with density functional theory (DFT) calculations and AV of candidate compounds are predicted from a smaller dataset of 650 compounds. Both physical and electronic descriptors of elements for each compound are utilized for ML model training. The evaluation coefficient (R2) and root mean squared error (RMSE) of the XGBoost model were up to 0.85 and 0.41 respectively to predict the AV during testing of the model. Seven novel quaternary (Na0.67TM10.5TM20.5O2 namely Na0.67Ti0.5Fe0.5O2, Na0.67Ti0.5Cr0.5O2, Na0.67V0.5Fe0.5O2) and pentanary compounds (Na0.67TM10.5TM20.5O1.944F0.056 namely Na0.67Ti0.5Cr0.5O1.944F0.056, Na0.67Ti0.5Fe0.5O1.944F0.056, Na0.67Ti0.5V0.5O1.944F0.056, Na0.67Ti0.5Ni0.5O1.944F0.056) were identified from the XGBoost model to exhibit AV between 2.8 to 4.4 V. Thereafter, the AV as predicted by ML model was verified by DFT calculations and the maximum and minimum errors are obtained between 15 - 3 % respectively. The phase stability, electronic structures, magnetic properties, dynamic stability and activation energy for diffusion are studied by DFT and AIMD techniques. Nevertheless, our approach could significantly accelerate the discovery of novel cathodes and provide valuable insights for the study of intercalating materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信