TRAP进展的十年:癫痫功能网络研究的见解和未来展望。

IF 6.7 2区 医学 Q1 NEUROSCIENCES
Zhisheng Li , Wangjialu Lu , Lin Yang , Nanxi Lai , Yi Wang , Zhong Chen
{"title":"TRAP进展的十年:癫痫功能网络研究的见解和未来展望。","authors":"Zhisheng Li ,&nbsp;Wangjialu Lu ,&nbsp;Lin Yang ,&nbsp;Nanxi Lai ,&nbsp;Yi Wang ,&nbsp;Zhong Chen","doi":"10.1016/j.pneurobio.2024.102707","DOIUrl":null,"url":null,"abstract":"<div><div>Targeted Recombination in Active Populations (TRAP) represents an effective and extensively applied technique that has earned significant utilization in neuroscience over the past decade, primarily for identifying and modulating functionally activated neuronal ensembles associated with diverse behaviors. As epilepsy is a neurological disorder characterized by pathological hyper-excitatory networks, TRAP has already been widely applied in epilepsy research. However, the deployment of TRAP in this field remains underexplored, and there is significant potential for further application and development in epilepsy-related investigations. In this review, we embark on a concise examination of the mechanisms behind several TRAP tools, introduce the current applications of TRAP in epilepsy research, and collate the key advantages as well as limitations of TRAP. Furthermore, we sketch out perspectives on potential applications of TRAP in future epilepsy research, grounded in the present landscape and challenges of the field, as well as the ways TRAP has been embraced in other neuroscience domains.</div></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"244 ","pages":"Article 102707"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decade of TRAP progress: Insights and future prospects for advancing functional network research in epilepsy\",\"authors\":\"Zhisheng Li ,&nbsp;Wangjialu Lu ,&nbsp;Lin Yang ,&nbsp;Nanxi Lai ,&nbsp;Yi Wang ,&nbsp;Zhong Chen\",\"doi\":\"10.1016/j.pneurobio.2024.102707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Targeted Recombination in Active Populations (TRAP) represents an effective and extensively applied technique that has earned significant utilization in neuroscience over the past decade, primarily for identifying and modulating functionally activated neuronal ensembles associated with diverse behaviors. As epilepsy is a neurological disorder characterized by pathological hyper-excitatory networks, TRAP has already been widely applied in epilepsy research. However, the deployment of TRAP in this field remains underexplored, and there is significant potential for further application and development in epilepsy-related investigations. In this review, we embark on a concise examination of the mechanisms behind several TRAP tools, introduce the current applications of TRAP in epilepsy research, and collate the key advantages as well as limitations of TRAP. Furthermore, we sketch out perspectives on potential applications of TRAP in future epilepsy research, grounded in the present landscape and challenges of the field, as well as the ways TRAP has been embraced in other neuroscience domains.</div></div>\",\"PeriodicalId\":20851,\"journal\":{\"name\":\"Progress in Neurobiology\",\"volume\":\"244 \",\"pages\":\"Article 102707\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301008224001436\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008224001436","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

活性群体中的靶向重组(TRAP)是一种有效且广泛应用的技术,在过去十年中在神经科学中获得了显著的应用,主要用于识别和调节与不同行为相关的功能激活神经元集合。由于癫痫是一种以病理性超兴奋网络为特征的神经系统疾病,TRAP已广泛应用于癫痫研究。然而,TRAP在这一领域的应用仍未得到充分探索,在癫痫相关调查中有进一步应用和发展的巨大潜力。在这篇综述中,我们将简要介绍几种TRAP工具背后的机制,介绍TRAP在癫痫研究中的当前应用,并整理TRAP的主要优势和局限性。此外,我们概述了TRAP在未来癫痫研究中的潜在应用前景,基于该领域的现状和挑战,以及TRAP在其他神经科学领域的应用方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decade of TRAP progress: Insights and future prospects for advancing functional network research in epilepsy
Targeted Recombination in Active Populations (TRAP) represents an effective and extensively applied technique that has earned significant utilization in neuroscience over the past decade, primarily for identifying and modulating functionally activated neuronal ensembles associated with diverse behaviors. As epilepsy is a neurological disorder characterized by pathological hyper-excitatory networks, TRAP has already been widely applied in epilepsy research. However, the deployment of TRAP in this field remains underexplored, and there is significant potential for further application and development in epilepsy-related investigations. In this review, we embark on a concise examination of the mechanisms behind several TRAP tools, introduce the current applications of TRAP in epilepsy research, and collate the key advantages as well as limitations of TRAP. Furthermore, we sketch out perspectives on potential applications of TRAP in future epilepsy research, grounded in the present landscape and challenges of the field, as well as the ways TRAP has been embraced in other neuroscience domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Neurobiology
Progress in Neurobiology 医学-神经科学
CiteScore
12.80
自引率
1.50%
发文量
107
审稿时长
33 days
期刊介绍: Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信