脊载扩展相互作用腔增强扩展相互作用速调管的带宽

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Vemula Bhanu Naidu;Dipanjan Gope;Subrata Kumar Datta
{"title":"脊载扩展相互作用腔增强扩展相互作用速调管的带宽","authors":"Vemula Bhanu Naidu;Dipanjan Gope;Subrata Kumar Datta","doi":"10.1109/TPS.2024.3499351","DOIUrl":null,"url":null,"abstract":"A scheme of symmetric ridge loading of the top and bottom shorting cavities of an extended interaction cavity is proposed in this article for the broadbanding of an extended interaction klystron (EIK). While implementing this scheme, the periodicity of the ladder circuit has not been changed. In order to demonstrate the efficacy of the ridge loading in broadbanding, 3-D electromagnetic analysis was carried out on a W-band extended interaction cavity structure. The ridge loading is found to reduce the ohmic quality factor of the extended interaction cavity by 25% against that of no loading for the cavity operating at 95 GHz. At the same time, the ridge loading has shown marginal changes on the characteristic impedance and the peak axial electric field of the structure. A particle-in-cell (PIC) analysis has shown an enhancement in the 3-dB hot bandwidth of the ridge-loaded EIK (464 MHz) by around 250% in comparison to an unloaded device (185 MHz).","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 10","pages":"5179-5183"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bandwidth Enhancement of Extended Interaction Klystron by Ridge-Loaded Extended Interaction Cavity\",\"authors\":\"Vemula Bhanu Naidu;Dipanjan Gope;Subrata Kumar Datta\",\"doi\":\"10.1109/TPS.2024.3499351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scheme of symmetric ridge loading of the top and bottom shorting cavities of an extended interaction cavity is proposed in this article for the broadbanding of an extended interaction klystron (EIK). While implementing this scheme, the periodicity of the ladder circuit has not been changed. In order to demonstrate the efficacy of the ridge loading in broadbanding, 3-D electromagnetic analysis was carried out on a W-band extended interaction cavity structure. The ridge loading is found to reduce the ohmic quality factor of the extended interaction cavity by 25% against that of no loading for the cavity operating at 95 GHz. At the same time, the ridge loading has shown marginal changes on the characteristic impedance and the peak axial electric field of the structure. A particle-in-cell (PIC) analysis has shown an enhancement in the 3-dB hot bandwidth of the ridge-loaded EIK (464 MHz) by around 250% in comparison to an unloaded device (185 MHz).\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"52 10\",\"pages\":\"5179-5183\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10776573/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10776573/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了扩展相互作用腔的上下短腔的对称脊加载方案,用于扩展相互作用速调管(EIK)的宽带化。在实施该方案时,没有改变阶梯电路的周期性。为了验证山脊载荷在宽带中的有效性,对w波段扩展相互作用空腔结构进行了三维电磁分析。研究发现,在95 GHz频率下,与无负载相比,脊载可使扩展相互作用腔的欧姆质量因子降低25%。同时,脊荷载对结构的特性阻抗和峰值轴向电场的影响也呈现出微小的变化。细胞内粒子(PIC)分析表明,与未加载设备(185 MHz)相比,脊加载EIK (464 MHz)的3db热带宽提高了约250%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bandwidth Enhancement of Extended Interaction Klystron by Ridge-Loaded Extended Interaction Cavity
A scheme of symmetric ridge loading of the top and bottom shorting cavities of an extended interaction cavity is proposed in this article for the broadbanding of an extended interaction klystron (EIK). While implementing this scheme, the periodicity of the ladder circuit has not been changed. In order to demonstrate the efficacy of the ridge loading in broadbanding, 3-D electromagnetic analysis was carried out on a W-band extended interaction cavity structure. The ridge loading is found to reduce the ohmic quality factor of the extended interaction cavity by 25% against that of no loading for the cavity operating at 95 GHz. At the same time, the ridge loading has shown marginal changes on the characteristic impedance and the peak axial electric field of the structure. A particle-in-cell (PIC) analysis has shown an enhancement in the 3-dB hot bandwidth of the ridge-loaded EIK (464 MHz) by around 250% in comparison to an unloaded device (185 MHz).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信