用双探头测量风洞等离子体的电子密度

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Pengcheng Yu;Yu Liu;Xiangqun Liu;Jiuhou Lei
{"title":"用双探头测量风洞等离子体的电子密度","authors":"Pengcheng Yu;Yu Liu;Xiangqun Liu;Jiuhou Lei","doi":"10.1109/TPS.2024.3499932","DOIUrl":null,"url":null,"abstract":"It is difficult to diagnose the electron density of a high-temperature ablation plasma flow field because a traditional cylindrical Langmuir probe (CP) is easily damaged under these conditions. In this work, a new type of embedded Langmuir probe, referred to as a double flush-mounted probe (DFP), was developed to measure the electron density of a high-temperature ablation plasma flow field. It was verified that the DFP can work stably in different types of wind tunnels. In addition, the results from the new probe were compared with those from a CP. The results suggest that the DFP can be used to accurately determine the plasma density over long time periods. Therefore, this work provides a feasible method for solving the problem of online diagnostics in a high-temperature ablation plasma flow field.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 10","pages":"5234-5240"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of the Electron Density of a Wind-Tunnel Plasma Using a Double Flush-Mounted Probe\",\"authors\":\"Pengcheng Yu;Yu Liu;Xiangqun Liu;Jiuhou Lei\",\"doi\":\"10.1109/TPS.2024.3499932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is difficult to diagnose the electron density of a high-temperature ablation plasma flow field because a traditional cylindrical Langmuir probe (CP) is easily damaged under these conditions. In this work, a new type of embedded Langmuir probe, referred to as a double flush-mounted probe (DFP), was developed to measure the electron density of a high-temperature ablation plasma flow field. It was verified that the DFP can work stably in different types of wind tunnels. In addition, the results from the new probe were compared with those from a CP. The results suggest that the DFP can be used to accurately determine the plasma density over long time periods. Therefore, this work provides a feasible method for solving the problem of online diagnostics in a high-temperature ablation plasma flow field.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"52 10\",\"pages\":\"5234-5240\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10768944/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10768944/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

传统的圆柱形朗缪尔探针(CP)在高温烧蚀等离子体流场中容易损坏,因此难以诊断其电子密度。在这项工作中,开发了一种新型嵌入式Langmuir探针,称为双冲洗式探针(DFP),用于测量高温烧蚀等离子体流场的电子密度。验证了DFP在不同类型风洞中均能稳定工作。此外,将新探针的结果与CP的结果进行了比较。结果表明,DFP可以用来准确地确定长时间内的等离子体密度。因此,本工作为解决高温烧蚀等离子体流场在线诊断问题提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of the Electron Density of a Wind-Tunnel Plasma Using a Double Flush-Mounted Probe
It is difficult to diagnose the electron density of a high-temperature ablation plasma flow field because a traditional cylindrical Langmuir probe (CP) is easily damaged under these conditions. In this work, a new type of embedded Langmuir probe, referred to as a double flush-mounted probe (DFP), was developed to measure the electron density of a high-temperature ablation plasma flow field. It was verified that the DFP can work stably in different types of wind tunnels. In addition, the results from the new probe were compared with those from a CP. The results suggest that the DFP can be used to accurately determine the plasma density over long time periods. Therefore, this work provides a feasible method for solving the problem of online diagnostics in a high-temperature ablation plasma flow field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信