Mohammad Karami, Mohsen Bagheri, Alireza Abbasi-Baharanchi, Kamahladin Haghbeen, Abdolrahim Nouri, Ali Asghar Karkhane, Mansour Ghorbanpour, Mohsen Farhadpour
{"title":"探讨微生物处理玫瑰精油蒸馏废水发酵及糖苷香气生物转化的能力","authors":"Mohammad Karami, Mohsen Bagheri, Alireza Abbasi-Baharanchi, Kamahladin Haghbeen, Abdolrahim Nouri, Ali Asghar Karkhane, Mansour Ghorbanpour, Mohsen Farhadpour","doi":"10.1186/s40538-024-00717-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>One of the main concerns for ecological sustainability is finding ways to convert byproducts from medicinal aroma plants into high-value ingredients. The Damask rose (<i>Rosa damascena</i> Mill.) is a valuable species of aromatic rose that is grown in specific floriculture regions of Iran for the extraction of essential oils or preparation of rose water. The rose is widely used in cosmetics, flavor or fragrance formulations, and pharmaceutical products worldwide. The process of water-steam distillation is commonly used to extract rose oil, with an extraction efficiency of ~ 0.03–0.05% for active components. However, a significant amount of waste is generated during this process, with a large portion of the distillate being composed of water. This waste is known as rose oil hydrodistillation wastewater (RODW) and is considered a biocontaminant. It poses major ecological difficulties when disposed of in surface water and public drainage systems, due to the high concentration of complex degradable chemical compounds, such as polyphenols.</p><h3>Results</h3><p>This study highlights the potential of using three different types of microorganisms, namely <i>Lactobacillus acidophilus</i>, <i>Pichia pastoris</i>, and <i>Saccharomyces cerevisiae</i> for the conversion of glycosidically conjugated forms of nonvolatile aroma precursors into valuable aroma compounds. Gas chromatography-mass spectrometry (GC–MS) analysis demonstrated that all three microorganisms could affect the concentration of volatile components. However, when the sample was treated with <i>S. cerevisiae</i> for 120 h, the highest levels of recovery were observed for phenyl ethyl alcohol and eucalyptol, which were 2.5 and 80 times greater than those of the untreated sample, respectively. Moreover, the levels of α-pinene and anethole were also increased to ~ 9.7 and 11.7 times after 48 h of treatment, respectively. Additionally, the fermentation process increased in the total phenolic and flavonoid contents.</p><h3>Conclusion</h3><p>Using different microbial biocatalysts to recover natural bioactive aroma compounds is an attractive and scalable bioconversion methodology for producing value-added chemical derivatives from the waste of medicinal plants.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00717-3","citationCount":"0","resultStr":"{\"title\":\"Exploring the capacity of microorganism treatment for fermentation and glycosidic aroma bioconversion from rose oil distillation wastewater\",\"authors\":\"Mohammad Karami, Mohsen Bagheri, Alireza Abbasi-Baharanchi, Kamahladin Haghbeen, Abdolrahim Nouri, Ali Asghar Karkhane, Mansour Ghorbanpour, Mohsen Farhadpour\",\"doi\":\"10.1186/s40538-024-00717-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>One of the main concerns for ecological sustainability is finding ways to convert byproducts from medicinal aroma plants into high-value ingredients. The Damask rose (<i>Rosa damascena</i> Mill.) is a valuable species of aromatic rose that is grown in specific floriculture regions of Iran for the extraction of essential oils or preparation of rose water. The rose is widely used in cosmetics, flavor or fragrance formulations, and pharmaceutical products worldwide. The process of water-steam distillation is commonly used to extract rose oil, with an extraction efficiency of ~ 0.03–0.05% for active components. However, a significant amount of waste is generated during this process, with a large portion of the distillate being composed of water. This waste is known as rose oil hydrodistillation wastewater (RODW) and is considered a biocontaminant. It poses major ecological difficulties when disposed of in surface water and public drainage systems, due to the high concentration of complex degradable chemical compounds, such as polyphenols.</p><h3>Results</h3><p>This study highlights the potential of using three different types of microorganisms, namely <i>Lactobacillus acidophilus</i>, <i>Pichia pastoris</i>, and <i>Saccharomyces cerevisiae</i> for the conversion of glycosidically conjugated forms of nonvolatile aroma precursors into valuable aroma compounds. Gas chromatography-mass spectrometry (GC–MS) analysis demonstrated that all three microorganisms could affect the concentration of volatile components. However, when the sample was treated with <i>S. cerevisiae</i> for 120 h, the highest levels of recovery were observed for phenyl ethyl alcohol and eucalyptol, which were 2.5 and 80 times greater than those of the untreated sample, respectively. Moreover, the levels of α-pinene and anethole were also increased to ~ 9.7 and 11.7 times after 48 h of treatment, respectively. Additionally, the fermentation process increased in the total phenolic and flavonoid contents.</p><h3>Conclusion</h3><p>Using different microbial biocatalysts to recover natural bioactive aroma compounds is an attractive and scalable bioconversion methodology for producing value-added chemical derivatives from the waste of medicinal plants.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00717-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-024-00717-3\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00717-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the capacity of microorganism treatment for fermentation and glycosidic aroma bioconversion from rose oil distillation wastewater
Background
One of the main concerns for ecological sustainability is finding ways to convert byproducts from medicinal aroma plants into high-value ingredients. The Damask rose (Rosa damascena Mill.) is a valuable species of aromatic rose that is grown in specific floriculture regions of Iran for the extraction of essential oils or preparation of rose water. The rose is widely used in cosmetics, flavor or fragrance formulations, and pharmaceutical products worldwide. The process of water-steam distillation is commonly used to extract rose oil, with an extraction efficiency of ~ 0.03–0.05% for active components. However, a significant amount of waste is generated during this process, with a large portion of the distillate being composed of water. This waste is known as rose oil hydrodistillation wastewater (RODW) and is considered a biocontaminant. It poses major ecological difficulties when disposed of in surface water and public drainage systems, due to the high concentration of complex degradable chemical compounds, such as polyphenols.
Results
This study highlights the potential of using three different types of microorganisms, namely Lactobacillus acidophilus, Pichia pastoris, and Saccharomyces cerevisiae for the conversion of glycosidically conjugated forms of nonvolatile aroma precursors into valuable aroma compounds. Gas chromatography-mass spectrometry (GC–MS) analysis demonstrated that all three microorganisms could affect the concentration of volatile components. However, when the sample was treated with S. cerevisiae for 120 h, the highest levels of recovery were observed for phenyl ethyl alcohol and eucalyptol, which were 2.5 and 80 times greater than those of the untreated sample, respectively. Moreover, the levels of α-pinene and anethole were also increased to ~ 9.7 and 11.7 times after 48 h of treatment, respectively. Additionally, the fermentation process increased in the total phenolic and flavonoid contents.
Conclusion
Using different microbial biocatalysts to recover natural bioactive aroma compounds is an attractive and scalable bioconversion methodology for producing value-added chemical derivatives from the waste of medicinal plants.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.