基于稀疏变压器的双支路连接网络单幅图像去雨方法

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fangfang Qin, Zongpu Jia, Xiaoyan Pang, Shan Zhao
{"title":"基于稀疏变压器的双支路连接网络单幅图像去雨方法","authors":"Fangfang Qin, Zongpu Jia, Xiaoyan Pang, Shan Zhao","doi":"10.1007/s40747-024-01711-w","DOIUrl":null,"url":null,"abstract":"<p>In response to image degradation caused by rain during image acquisition, this paper proposes a rain removal method for single image of dual-branch joint network based on a sparse Transformer (DBSTNet). The developed model comprises a rain removal subnet and a background recovery subnet. The former extracts rain trace information utilizing a rain removal strategy, while the latter employs this information to restore background details. Furthermore, a U-shaped encoder-decoder branch (UEDB) focuses on local features to mitigate the impact of rainwater on background detail textures. UEDB incorporates a feature refinement unit to maximize the contribution of the channel attention mechanism in recovering local detail features. Additionally, since tokens with low relevance in the Transformer may influence image recovery, this study introduces a residual sparse Transformer branch (RSTB) to overcome the limitations of the Convolutional Neural Network’s (CNN’s) receptive field. Indeed, RSTB preserves the most valuable self-attention values for the aggregation of features, facilitating high-quality image reconstruction from a global perspective. Finally, the parallel dual-branch joint module, composed of RSTB and UEDB branches, effectively captures the local context and global structure, culminating in a clear background image. Experimental validation on synthetic and real datasets demonstrates that rain removal images exhibit richer detail information, significantly improving the overall visual effect.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"25 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rain removal method for single image of dual-branch joint network based on sparse transformer\",\"authors\":\"Fangfang Qin, Zongpu Jia, Xiaoyan Pang, Shan Zhao\",\"doi\":\"10.1007/s40747-024-01711-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In response to image degradation caused by rain during image acquisition, this paper proposes a rain removal method for single image of dual-branch joint network based on a sparse Transformer (DBSTNet). The developed model comprises a rain removal subnet and a background recovery subnet. The former extracts rain trace information utilizing a rain removal strategy, while the latter employs this information to restore background details. Furthermore, a U-shaped encoder-decoder branch (UEDB) focuses on local features to mitigate the impact of rainwater on background detail textures. UEDB incorporates a feature refinement unit to maximize the contribution of the channel attention mechanism in recovering local detail features. Additionally, since tokens with low relevance in the Transformer may influence image recovery, this study introduces a residual sparse Transformer branch (RSTB) to overcome the limitations of the Convolutional Neural Network’s (CNN’s) receptive field. Indeed, RSTB preserves the most valuable self-attention values for the aggregation of features, facilitating high-quality image reconstruction from a global perspective. Finally, the parallel dual-branch joint module, composed of RSTB and UEDB branches, effectively captures the local context and global structure, culminating in a clear background image. Experimental validation on synthetic and real datasets demonstrates that rain removal images exhibit richer detail information, significantly improving the overall visual effect.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01711-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01711-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

针对图像采集过程中雨水对图像的影响,提出了一种基于稀疏变压器(DBSTNet)的双支路联合网络单幅图像去雨方法。所开发的模型包括一个除雨子网和一个后台恢复子网。前者利用去雨策略提取雨迹信息,而后者利用这些信息来恢复背景细节。此外,u形的编码器-解码器分支(UEDB)侧重于局部特征,以减轻雨水对背景细节纹理的影响。UEDB包含一个特征细化单元,以最大限度地发挥通道注意机制在恢复局部细节特征方面的作用。此外,由于Transformer中相关性较低的令牌可能会影响图像恢复,因此本研究引入了残差稀疏Transformer分支(RSTB)来克服卷积神经网络(CNN)接受域的局限性。事实上,RSTB保留了特征聚合中最有价值的自关注值,便于从全局角度进行高质量的图像重建。最后,由RSTB和UEDB分支组成的并行双分支联合模块,有效地捕捉了局部文脉和全局结构,最终形成清晰的背景图像。在合成数据集和真实数据集上的实验验证表明,降雨图像具有更丰富的细节信息,显著提高了整体视觉效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rain removal method for single image of dual-branch joint network based on sparse transformer

In response to image degradation caused by rain during image acquisition, this paper proposes a rain removal method for single image of dual-branch joint network based on a sparse Transformer (DBSTNet). The developed model comprises a rain removal subnet and a background recovery subnet. The former extracts rain trace information utilizing a rain removal strategy, while the latter employs this information to restore background details. Furthermore, a U-shaped encoder-decoder branch (UEDB) focuses on local features to mitigate the impact of rainwater on background detail textures. UEDB incorporates a feature refinement unit to maximize the contribution of the channel attention mechanism in recovering local detail features. Additionally, since tokens with low relevance in the Transformer may influence image recovery, this study introduces a residual sparse Transformer branch (RSTB) to overcome the limitations of the Convolutional Neural Network’s (CNN’s) receptive field. Indeed, RSTB preserves the most valuable self-attention values for the aggregation of features, facilitating high-quality image reconstruction from a global perspective. Finally, the parallel dual-branch joint module, composed of RSTB and UEDB branches, effectively captures the local context and global structure, culminating in a clear background image. Experimental validation on synthetic and real datasets demonstrates that rain removal images exhibit richer detail information, significantly improving the overall visual effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信