{"title":"基于复合纳米纤维膜的汗液分析微流控荧光传感器","authors":"Xuecui Mei, Lei Zhou, Liang Zhu, Bin Wang","doi":"10.1021/acs.analchem.4c04616","DOIUrl":null,"url":null,"abstract":"Microfluidic chips play a crucial role in wearable sensors for sweat collection. However, previously reported wearable microfluidic chips, such as those based on poly(dimethylsiloxane) (PDMS) and paper, encounter sweat accumulation at the skin–sensor interface in practical applications, which consequently affects both sensing stability and wearing comfort. Herein, we propose a composite nanofiber membrane (CNMF)-based microfluidic chip for in situ sweat collection. The CNMF with directional water transport capability was integrated with patterned PDMS to prepare microfluidic chips. On one hand, sweat can be automatically transported to the analysis area along the designed pathway. On the other hand, sweat transfers from the hydrophobic membrane close to the skin to the hydrophilic membrane, effectively avoiding sweat accumulation and facilitating a comfortable skin microenvironment. Subsequently, we constructed a CNMF-based microfluidic fluorescence sensor for the analysis of multiple targets in human sweat. A portable 3D-printed device was employed for the visual signal output. Results indicated that the microfluidic sensor exhibits excellent reliability for collecting and analyzing sweat. This work provides new insights into the construction of wearable microfluidic chips with enhanced wearing comfort.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"83 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Nanofiber Membrane-Based Microfluidic Fluorescence Sensors for Sweat Analysis\",\"authors\":\"Xuecui Mei, Lei Zhou, Liang Zhu, Bin Wang\",\"doi\":\"10.1021/acs.analchem.4c04616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microfluidic chips play a crucial role in wearable sensors for sweat collection. However, previously reported wearable microfluidic chips, such as those based on poly(dimethylsiloxane) (PDMS) and paper, encounter sweat accumulation at the skin–sensor interface in practical applications, which consequently affects both sensing stability and wearing comfort. Herein, we propose a composite nanofiber membrane (CNMF)-based microfluidic chip for in situ sweat collection. The CNMF with directional water transport capability was integrated with patterned PDMS to prepare microfluidic chips. On one hand, sweat can be automatically transported to the analysis area along the designed pathway. On the other hand, sweat transfers from the hydrophobic membrane close to the skin to the hydrophilic membrane, effectively avoiding sweat accumulation and facilitating a comfortable skin microenvironment. Subsequently, we constructed a CNMF-based microfluidic fluorescence sensor for the analysis of multiple targets in human sweat. A portable 3D-printed device was employed for the visual signal output. Results indicated that the microfluidic sensor exhibits excellent reliability for collecting and analyzing sweat. This work provides new insights into the construction of wearable microfluidic chips with enhanced wearing comfort.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c04616\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04616","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Composite Nanofiber Membrane-Based Microfluidic Fluorescence Sensors for Sweat Analysis
Microfluidic chips play a crucial role in wearable sensors for sweat collection. However, previously reported wearable microfluidic chips, such as those based on poly(dimethylsiloxane) (PDMS) and paper, encounter sweat accumulation at the skin–sensor interface in practical applications, which consequently affects both sensing stability and wearing comfort. Herein, we propose a composite nanofiber membrane (CNMF)-based microfluidic chip for in situ sweat collection. The CNMF with directional water transport capability was integrated with patterned PDMS to prepare microfluidic chips. On one hand, sweat can be automatically transported to the analysis area along the designed pathway. On the other hand, sweat transfers from the hydrophobic membrane close to the skin to the hydrophilic membrane, effectively avoiding sweat accumulation and facilitating a comfortable skin microenvironment. Subsequently, we constructed a CNMF-based microfluidic fluorescence sensor for the analysis of multiple targets in human sweat. A portable 3D-printed device was employed for the visual signal output. Results indicated that the microfluidic sensor exhibits excellent reliability for collecting and analyzing sweat. This work provides new insights into the construction of wearable microfluidic chips with enhanced wearing comfort.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.