{"title":"利用扫描结构照明超分辨率显微镜对雨嗜血球菌生理状态的多维表征","authors":"Meiting Wang, Yifeng Deng, Yuye Wang, Jiajie Chen, Xinran Li, Peng Du, Xiaomin Zheng, Junle Qu, Bruce Zhi Gao, Xiao Peng, Yonghong Shao","doi":"10.1021/acs.analchem.4c05470","DOIUrl":null,"url":null,"abstract":"<i>Haematococcus pluvialis</i> (HP) is a freshwater alga known for its ability to accumulate the potent antioxidant astaxanthin, which has extensive applications in aquaculture, pharmaceuticals, and cosmetics. Astaxanthin rapidly accumulates under unfavorable environmental conditions. However, the mechanisms of astaxanthin accumulation under various stress conditions remain unclear. This mainly stems from the limitations of current imaging techniques, which lack super-resolution, label-free, and three-dimensional (3D) imaging capabilities. In this study, we employed scanning structured illumination microscopy (SSIM) to achieve dynamic 3D ultrastructural reconstructions of HP cells under various stress conditions. This advanced imaging approach allowed us to closely observe the stress responses of HP cells, revealing significant morphological changes induced by different stressors. Additionally, we examined alterations in the HP cell wall under these conditions and explored the relationship between these morphological changes and the rate of astaxanthin accumulation during identical stress durations. The results clearly demonstrate that light stress, which induces a more comprehensive disruption of the entire cell, leads to a faster rate of astaxanthin accumulation compared to salt stress, which exerts its effects from the exterior inward. The rate of astaxanthin accumulation under light stress is approximately twice that observed under salt stress conditions. Our findings offer new insights into the subcellular dynamics of astaxanthin accumulation in HP, underscoring the effectiveness of super-resolution techniques in clarifying these processes.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"71 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional Characterization of the Physiological State of Hematococcuspluvialis Using Scanning Structured Illumination Super-Resolution Microscopy\",\"authors\":\"Meiting Wang, Yifeng Deng, Yuye Wang, Jiajie Chen, Xinran Li, Peng Du, Xiaomin Zheng, Junle Qu, Bruce Zhi Gao, Xiao Peng, Yonghong Shao\",\"doi\":\"10.1021/acs.analchem.4c05470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Haematococcus pluvialis</i> (HP) is a freshwater alga known for its ability to accumulate the potent antioxidant astaxanthin, which has extensive applications in aquaculture, pharmaceuticals, and cosmetics. Astaxanthin rapidly accumulates under unfavorable environmental conditions. However, the mechanisms of astaxanthin accumulation under various stress conditions remain unclear. This mainly stems from the limitations of current imaging techniques, which lack super-resolution, label-free, and three-dimensional (3D) imaging capabilities. In this study, we employed scanning structured illumination microscopy (SSIM) to achieve dynamic 3D ultrastructural reconstructions of HP cells under various stress conditions. This advanced imaging approach allowed us to closely observe the stress responses of HP cells, revealing significant morphological changes induced by different stressors. Additionally, we examined alterations in the HP cell wall under these conditions and explored the relationship between these morphological changes and the rate of astaxanthin accumulation during identical stress durations. The results clearly demonstrate that light stress, which induces a more comprehensive disruption of the entire cell, leads to a faster rate of astaxanthin accumulation compared to salt stress, which exerts its effects from the exterior inward. The rate of astaxanthin accumulation under light stress is approximately twice that observed under salt stress conditions. Our findings offer new insights into the subcellular dynamics of astaxanthin accumulation in HP, underscoring the effectiveness of super-resolution techniques in clarifying these processes.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05470\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Multidimensional Characterization of the Physiological State of Hematococcuspluvialis Using Scanning Structured Illumination Super-Resolution Microscopy
Haematococcus pluvialis (HP) is a freshwater alga known for its ability to accumulate the potent antioxidant astaxanthin, which has extensive applications in aquaculture, pharmaceuticals, and cosmetics. Astaxanthin rapidly accumulates under unfavorable environmental conditions. However, the mechanisms of astaxanthin accumulation under various stress conditions remain unclear. This mainly stems from the limitations of current imaging techniques, which lack super-resolution, label-free, and three-dimensional (3D) imaging capabilities. In this study, we employed scanning structured illumination microscopy (SSIM) to achieve dynamic 3D ultrastructural reconstructions of HP cells under various stress conditions. This advanced imaging approach allowed us to closely observe the stress responses of HP cells, revealing significant morphological changes induced by different stressors. Additionally, we examined alterations in the HP cell wall under these conditions and explored the relationship between these morphological changes and the rate of astaxanthin accumulation during identical stress durations. The results clearly demonstrate that light stress, which induces a more comprehensive disruption of the entire cell, leads to a faster rate of astaxanthin accumulation compared to salt stress, which exerts its effects from the exterior inward. The rate of astaxanthin accumulation under light stress is approximately twice that observed under salt stress conditions. Our findings offer new insights into the subcellular dynamics of astaxanthin accumulation in HP, underscoring the effectiveness of super-resolution techniques in clarifying these processes.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.