{"title":"应用分子印迹技术从甘草残基中特异性提取光甘草定","authors":"Jingyue Zhang, Meijia Shan, Wen Li","doi":"10.1016/j.foodchem.2024.142609","DOIUrl":null,"url":null,"abstract":"<div><div>The large-scale production of glycyrrhizic acid inevitably generates a large amount of licorice residues waste, which contains a wealth of active ingredients, especially glabridin, a natural preservative. However, traditional extraction methods for glabridin are often limited by bottlenecks such as time-consuming, inefficient, and insufficient specificity. To overcome these challenges, this study innovatively introduced 2-phenylimidazole as a functional monomer by computer simulations and successfully developed magnetic molecularly imprinted polymers (MMIPs) for glabridin. The adsorption capacity of MMIPs could reach 25.61 mg/g at 300 min, and the MMIPs had high specificity with an imprinting factor of 1.9. In addition, the MMIPs had high selectivity and reproducibility with a selectivity factor of 2.34, and the adsorption capacity could be maintained at 90 % after six times of repeated use. It can increase the purity of glabridin from 20 % to about 77 % in the complex environment of licorice residues, showing good specificity and promising application.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"470 ","pages":"Article 142609"},"PeriodicalIF":9.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The specific extraction of glabridin from licorice residues using molecular imprinting technique\",\"authors\":\"Jingyue Zhang, Meijia Shan, Wen Li\",\"doi\":\"10.1016/j.foodchem.2024.142609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The large-scale production of glycyrrhizic acid inevitably generates a large amount of licorice residues waste, which contains a wealth of active ingredients, especially glabridin, a natural preservative. However, traditional extraction methods for glabridin are often limited by bottlenecks such as time-consuming, inefficient, and insufficient specificity. To overcome these challenges, this study innovatively introduced 2-phenylimidazole as a functional monomer by computer simulations and successfully developed magnetic molecularly imprinted polymers (MMIPs) for glabridin. The adsorption capacity of MMIPs could reach 25.61 mg/g at 300 min, and the MMIPs had high specificity with an imprinting factor of 1.9. In addition, the MMIPs had high selectivity and reproducibility with a selectivity factor of 2.34, and the adsorption capacity could be maintained at 90 % after six times of repeated use. It can increase the purity of glabridin from 20 % to about 77 % in the complex environment of licorice residues, showing good specificity and promising application.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"470 \",\"pages\":\"Article 142609\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624042596\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624042596","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
The specific extraction of glabridin from licorice residues using molecular imprinting technique
The large-scale production of glycyrrhizic acid inevitably generates a large amount of licorice residues waste, which contains a wealth of active ingredients, especially glabridin, a natural preservative. However, traditional extraction methods for glabridin are often limited by bottlenecks such as time-consuming, inefficient, and insufficient specificity. To overcome these challenges, this study innovatively introduced 2-phenylimidazole as a functional monomer by computer simulations and successfully developed magnetic molecularly imprinted polymers (MMIPs) for glabridin. The adsorption capacity of MMIPs could reach 25.61 mg/g at 300 min, and the MMIPs had high specificity with an imprinting factor of 1.9. In addition, the MMIPs had high selectivity and reproducibility with a selectivity factor of 2.34, and the adsorption capacity could be maintained at 90 % after six times of repeated use. It can increase the purity of glabridin from 20 % to about 77 % in the complex environment of licorice residues, showing good specificity and promising application.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.