小波家族在精神分裂症诊断中的比较研究。

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Frontiers in Human Neuroscience Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI:10.3389/fnhum.2024.1463819
E Sathiya, T D Rao, T Sunil Kumar
{"title":"小波家族在精神分裂症诊断中的比较研究。","authors":"E Sathiya, T D Rao, T Sunil Kumar","doi":"10.3389/fnhum.2024.1463819","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia (SZ) is a chronic mental disorder, affecting approximately 1% of the global population, it is believed to result from various environmental factors, with psychological factors potentially influencing its onset and progression. Discrete wavelet transform (DWT)-based approaches are effective in SZ detection. In this report, we aim to investigate the effect of wavelet and decomposition levels in SZ detection. In our study, we analyzed the early detection of SZ using DWT across various decomposition levels, ranging from 1 to 5, with different mother wavelets. The electroencephalogram (EEG) signals are processed using DWT, which decomposes them into multiple frequency bands, yielding approximation and detail coefficients at each level. Statistical features are then extracted from these coefficients. The computed feature vector is then fed into a classifier to distinguish between SZ and healthy controls (HC). Our approach achieves the highest classification accuracy of 100% on a publicly available dataset, outperforming existing state-of-the-art methods.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1463819"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666512/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comparative study of wavelet families for schizophrenia detection.\",\"authors\":\"E Sathiya, T D Rao, T Sunil Kumar\",\"doi\":\"10.3389/fnhum.2024.1463819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schizophrenia (SZ) is a chronic mental disorder, affecting approximately 1% of the global population, it is believed to result from various environmental factors, with psychological factors potentially influencing its onset and progression. Discrete wavelet transform (DWT)-based approaches are effective in SZ detection. In this report, we aim to investigate the effect of wavelet and decomposition levels in SZ detection. In our study, we analyzed the early detection of SZ using DWT across various decomposition levels, ranging from 1 to 5, with different mother wavelets. The electroencephalogram (EEG) signals are processed using DWT, which decomposes them into multiple frequency bands, yielding approximation and detail coefficients at each level. Statistical features are then extracted from these coefficients. The computed feature vector is then fed into a classifier to distinguish between SZ and healthy controls (HC). Our approach achieves the highest classification accuracy of 100% on a publicly available dataset, outperforming existing state-of-the-art methods.</p>\",\"PeriodicalId\":12536,\"journal\":{\"name\":\"Frontiers in Human Neuroscience\",\"volume\":\"18 \",\"pages\":\"1463819\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Human Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnhum.2024.1463819\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1463819","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

精神分裂症(SZ)是一种慢性精神障碍,影响全球约1%的人口,据信由各种环境因素引起,心理因素可能影响其发病和进展。基于离散小波变换(DWT)的方法是有效的SZ检测方法。在这篇报告中,我们的目的是研究小波和分解水平在SZ检测中的作用。在我们的研究中,我们分析了在不同的分解水平(从1到5,不同的母小波)上使用DWT对SZ的早期检测。对脑电图(EEG)信号进行小波变换(DWT)处理,将其分解成多个频带,在每个频带上得到近似系数和细节系数。然后从这些系数中提取统计特征。然后将计算的特征向量输入分类器以区分SZ和健康对照(HC)。我们的方法在公开可用的数据集上实现了100%的最高分类准确率,优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of wavelet families for schizophrenia detection.

Schizophrenia (SZ) is a chronic mental disorder, affecting approximately 1% of the global population, it is believed to result from various environmental factors, with psychological factors potentially influencing its onset and progression. Discrete wavelet transform (DWT)-based approaches are effective in SZ detection. In this report, we aim to investigate the effect of wavelet and decomposition levels in SZ detection. In our study, we analyzed the early detection of SZ using DWT across various decomposition levels, ranging from 1 to 5, with different mother wavelets. The electroencephalogram (EEG) signals are processed using DWT, which decomposes them into multiple frequency bands, yielding approximation and detail coefficients at each level. Statistical features are then extracted from these coefficients. The computed feature vector is then fed into a classifier to distinguish between SZ and healthy controls (HC). Our approach achieves the highest classification accuracy of 100% on a publicly available dataset, outperforming existing state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Human Neuroscience
Frontiers in Human Neuroscience 医学-神经科学
CiteScore
4.70
自引率
6.90%
发文量
830
审稿时长
2-4 weeks
期刊介绍: Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信