{"title":"soxr依赖性sodA1调控及其对嗜麦芽窄养单胞菌外部氧化应激存活的影响","authors":"Suparat Giengkam, Nisanart Charoenlap, Wirongrong Whangsuk, Kisana Bhinija, Skorn Mongkolsuk, Paiboon Vattanaviboon","doi":"10.1093/femsle/fnae112","DOIUrl":null,"url":null,"abstract":"<p><p>Stenotrophomonas maltophilia is an emerging global opportunistic pathogen that causes nosocomial infections. We demonstrated that the superoxide stress-sensing transcriptional regulator SoxR directly modulated the expression of an operon encompassing sodA1 (encoding manganese-containing superoxide dismutase) and fre (encoding putative flavin reductase) by directly binding to the operator site, which was located between the -35 and -10 motifs of the sodA1 promoter. It is known that upon exposure to the superoxide generators/redox-cycling drugs, the SoxR, which is bound to the operator site, became oxidized. This oxidation causes a conformational change of SoxR to an active form, enabling the upregulation of sodA1-fre gene expression. A ΔsodA1 was constructed, and the mutant showed enhanced sensitivity to the redox-cycling drugs, including menadione, plumbagin, and methyl viologen (paraquat), relative to its parental strain K279a. Thus, sodA1 may play a role in the survival of S. maltophilia under superoxide stress during either its saprophyte stage (e.g. exposure to redox-cycling drugs) or host-pathogen interactions.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SoxR-dependent regulation of sodA1 and its impact on Stenotrophomonas maltophilia survival under external oxidative stress.\",\"authors\":\"Suparat Giengkam, Nisanart Charoenlap, Wirongrong Whangsuk, Kisana Bhinija, Skorn Mongkolsuk, Paiboon Vattanaviboon\",\"doi\":\"10.1093/femsle/fnae112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stenotrophomonas maltophilia is an emerging global opportunistic pathogen that causes nosocomial infections. We demonstrated that the superoxide stress-sensing transcriptional regulator SoxR directly modulated the expression of an operon encompassing sodA1 (encoding manganese-containing superoxide dismutase) and fre (encoding putative flavin reductase) by directly binding to the operator site, which was located between the -35 and -10 motifs of the sodA1 promoter. It is known that upon exposure to the superoxide generators/redox-cycling drugs, the SoxR, which is bound to the operator site, became oxidized. This oxidation causes a conformational change of SoxR to an active form, enabling the upregulation of sodA1-fre gene expression. A ΔsodA1 was constructed, and the mutant showed enhanced sensitivity to the redox-cycling drugs, including menadione, plumbagin, and methyl viologen (paraquat), relative to its parental strain K279a. Thus, sodA1 may play a role in the survival of S. maltophilia under superoxide stress during either its saprophyte stage (e.g. exposure to redox-cycling drugs) or host-pathogen interactions.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnae112\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae112","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
SoxR-dependent regulation of sodA1 and its impact on Stenotrophomonas maltophilia survival under external oxidative stress.
Stenotrophomonas maltophilia is an emerging global opportunistic pathogen that causes nosocomial infections. We demonstrated that the superoxide stress-sensing transcriptional regulator SoxR directly modulated the expression of an operon encompassing sodA1 (encoding manganese-containing superoxide dismutase) and fre (encoding putative flavin reductase) by directly binding to the operator site, which was located between the -35 and -10 motifs of the sodA1 promoter. It is known that upon exposure to the superoxide generators/redox-cycling drugs, the SoxR, which is bound to the operator site, became oxidized. This oxidation causes a conformational change of SoxR to an active form, enabling the upregulation of sodA1-fre gene expression. A ΔsodA1 was constructed, and the mutant showed enhanced sensitivity to the redox-cycling drugs, including menadione, plumbagin, and methyl viologen (paraquat), relative to its parental strain K279a. Thus, sodA1 may play a role in the survival of S. maltophilia under superoxide stress during either its saprophyte stage (e.g. exposure to redox-cycling drugs) or host-pathogen interactions.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.