钙依赖性抗生素:构效关系及其脂质靶的测定。

IF 3.8 2区 医学 Q2 CHEMISTRY, MEDICINAL
ACS Infectious Diseases Pub Date : 2025-01-10 Epub Date: 2024-12-23 DOI:10.1021/acsinfecdis.4c00810
Jeremy Goodyear, Matthew Diamandas, Ryan Moreira, Scott D Taylor
{"title":"钙依赖性抗生素:构效关系及其脂质靶的测定。","authors":"Jeremy Goodyear, Matthew Diamandas, Ryan Moreira, Scott D Taylor","doi":"10.1021/acsinfecdis.4c00810","DOIUrl":null,"url":null,"abstract":"<p><p>The calcium-dependent antibiotics (CDAs) are a group of seven closely related membrane-active cyclic lipopeptide antibiotics (cLPAs) first isolated in the early 1980s from the fermentation broth of <i>Streptomyces coelicolor</i>. Their target was unknown, and the mechanism of action is uncertain. Herein, we report new routes for the synthesis of CDA4b and its analogues, explore the structure-activity relationships at its lipid tail and at positions 3, 9, and 11, and determine the CDAs' lipid target. A CDA4b analogue in which the epoxide group in CDA's 6-carbon lipid was replaced with a cyclopropyl group was 4-fold more active than CDA4b which suggests that the epoxide group is not acting as an electrophile to form a covalent bond with CDA4b's target. The activity of this cyclopropyl analogue was significantly increased by extending the length of the lipid to 10 carbons. Studies with analogues in which d-HOAsn9 is replaced with d-Asn9 or d-Ser9 reveal that the hydroxy group of the d-HOAsn9 residue is not crucial for CDAs' activity, while the amide moiety is important for activity. The l-Trp residue at position 11 could be replaced with l-kynurenine (l-Kyn) without significant loss of activity, while replacing the d-Trp residue at position 3 with d-Kyn resulted in a significant loss of activity. MIC values determined in the presence and absence of exogenous phospholipids and fluorescence spectroscopy studies using natural CDAs and CDA4b analogues containing Kyn and model membranes revealed that the CDAs' primary lipid target is cardiolipin, a target that is unique among the broader class of known calcium-dependent antibiotics.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"226-237"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Calcium-Dependent Antibiotics: Structure-Activity Relationships and Determination of Their Lipid Target.\",\"authors\":\"Jeremy Goodyear, Matthew Diamandas, Ryan Moreira, Scott D Taylor\",\"doi\":\"10.1021/acsinfecdis.4c00810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The calcium-dependent antibiotics (CDAs) are a group of seven closely related membrane-active cyclic lipopeptide antibiotics (cLPAs) first isolated in the early 1980s from the fermentation broth of <i>Streptomyces coelicolor</i>. Their target was unknown, and the mechanism of action is uncertain. Herein, we report new routes for the synthesis of CDA4b and its analogues, explore the structure-activity relationships at its lipid tail and at positions 3, 9, and 11, and determine the CDAs' lipid target. A CDA4b analogue in which the epoxide group in CDA's 6-carbon lipid was replaced with a cyclopropyl group was 4-fold more active than CDA4b which suggests that the epoxide group is not acting as an electrophile to form a covalent bond with CDA4b's target. The activity of this cyclopropyl analogue was significantly increased by extending the length of the lipid to 10 carbons. Studies with analogues in which d-HOAsn9 is replaced with d-Asn9 or d-Ser9 reveal that the hydroxy group of the d-HOAsn9 residue is not crucial for CDAs' activity, while the amide moiety is important for activity. The l-Trp residue at position 11 could be replaced with l-kynurenine (l-Kyn) without significant loss of activity, while replacing the d-Trp residue at position 3 with d-Kyn resulted in a significant loss of activity. MIC values determined in the presence and absence of exogenous phospholipids and fluorescence spectroscopy studies using natural CDAs and CDA4b analogues containing Kyn and model membranes revealed that the CDAs' primary lipid target is cardiolipin, a target that is unique among the broader class of known calcium-dependent antibiotics.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"226-237\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.4c00810\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00810","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

钙依赖性抗生素(CDAs)是一类亲缘关系密切的7种膜活性环脂肽抗生素(cLPAs),于20世纪80年代初首次从彩色链霉菌发酵液中分离得到。他们的目标是未知的,作用机制是不确定的。本文报道了合成CDA4b及其类似物的新途径,探索了其脂质尾部和3、9、11位的结构-活性关系,并确定了CDA4b的脂质靶点。在CDA4b类似物中,CDA的6碳脂质中的环氧基被环丙基取代,其活性比CDA4b高4倍,这表明环氧基不作为亲电试剂与CDA4b的靶标形成共价键。该环丙基类似物的活性通过将脂质长度延长至10个碳而显著提高。用d-Asn9或d-Ser9取代d-HOAsn9类似物的研究表明,d-HOAsn9残基的羟基对CDAs的活性不是至关重要的,而酰胺部分对活性是重要的。l-Trp的11位残基被l-犬尿氨酸(l-Kyn)取代后,活性没有明显下降,而d-Trp的3位残基被d-Kyn取代后,活性明显下降。在存在和不存在外源性磷脂的情况下测定MIC值,使用天然CDAs和含有Kyn和模型膜的CDA4b类似物的荧光光谱研究表明,CDAs的主要脂质靶点是心磷脂,这是已知的更广泛的钙依赖性抗生素中唯一的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Calcium-Dependent Antibiotics: Structure-Activity Relationships and Determination of Their Lipid Target.

The calcium-dependent antibiotics (CDAs) are a group of seven closely related membrane-active cyclic lipopeptide antibiotics (cLPAs) first isolated in the early 1980s from the fermentation broth of Streptomyces coelicolor. Their target was unknown, and the mechanism of action is uncertain. Herein, we report new routes for the synthesis of CDA4b and its analogues, explore the structure-activity relationships at its lipid tail and at positions 3, 9, and 11, and determine the CDAs' lipid target. A CDA4b analogue in which the epoxide group in CDA's 6-carbon lipid was replaced with a cyclopropyl group was 4-fold more active than CDA4b which suggests that the epoxide group is not acting as an electrophile to form a covalent bond with CDA4b's target. The activity of this cyclopropyl analogue was significantly increased by extending the length of the lipid to 10 carbons. Studies with analogues in which d-HOAsn9 is replaced with d-Asn9 or d-Ser9 reveal that the hydroxy group of the d-HOAsn9 residue is not crucial for CDAs' activity, while the amide moiety is important for activity. The l-Trp residue at position 11 could be replaced with l-kynurenine (l-Kyn) without significant loss of activity, while replacing the d-Trp residue at position 3 with d-Kyn resulted in a significant loss of activity. MIC values determined in the presence and absence of exogenous phospholipids and fluorescence spectroscopy studies using natural CDAs and CDA4b analogues containing Kyn and model membranes revealed that the CDAs' primary lipid target is cardiolipin, a target that is unique among the broader class of known calcium-dependent antibiotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信