Xinping Rao;Le Qin;Yugen Yi;Jin Liu;Gang Lei;Yuanlong Cao
{"title":"动态环境下一种新的自适应无源室内指纹定位方法","authors":"Xinping Rao;Le Qin;Yugen Yi;Jin Liu;Gang Lei;Yuanlong Cao","doi":"10.1109/TNSM.2024.3469374","DOIUrl":null,"url":null,"abstract":"In recent years, indoor localization has attracted a lot of interest and has become one of the key topics of Internet of Things (IoT) research, presenting a wide range of application scenarios. With the advantages of ubiquitous universal Wi-Fi platforms and the “unconscious collaborative sensing” in the monitored target, Channel State Information (CSI)-based device-free passive indoor fingerprinting localization has become a popular research topic. However, most existing studies have encountered the difficult issues of high deployment labor costs and degradation of localization accuracy due to fingerprint variations in real-world dynamic environments. In this paper, we propose BSWCLoc, a device-free passive fingerprint localization scheme based on the beyond-sharing-weights approach. BSWCLoc uses the calibrated CSI phases, which are more sensitive to the target location, as localization features and performs feature processing from a two-dimensional perspective to ultimately obtain rich fingerprint information. This allows BSWLoc to achieve satisfactory accuracy with only one communication link, significantly reducing deployment consumption. In addition, a beyond-sharing-weights (BSW) method for domain adaptation is developed in BSWCLoc to address the problem of changing CSI in dynamic environments, which results in reduced localization performance. The BSW method proposes a dual-flow structure, where one flow runs in the source domain and the other in the target domain, with correlated but not shared weights in the adaptation layer. BSWCLoc greatly exceeds the state-of-the-art in terms of positioning accuracy and robustness, according to an extensive study in the dynamic indoor environment over 6 days.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6140-6152"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Adaptive Device-Free Passive Indoor Fingerprinting Localization Under Dynamic Environment\",\"authors\":\"Xinping Rao;Le Qin;Yugen Yi;Jin Liu;Gang Lei;Yuanlong Cao\",\"doi\":\"10.1109/TNSM.2024.3469374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, indoor localization has attracted a lot of interest and has become one of the key topics of Internet of Things (IoT) research, presenting a wide range of application scenarios. With the advantages of ubiquitous universal Wi-Fi platforms and the “unconscious collaborative sensing” in the monitored target, Channel State Information (CSI)-based device-free passive indoor fingerprinting localization has become a popular research topic. However, most existing studies have encountered the difficult issues of high deployment labor costs and degradation of localization accuracy due to fingerprint variations in real-world dynamic environments. In this paper, we propose BSWCLoc, a device-free passive fingerprint localization scheme based on the beyond-sharing-weights approach. BSWCLoc uses the calibrated CSI phases, which are more sensitive to the target location, as localization features and performs feature processing from a two-dimensional perspective to ultimately obtain rich fingerprint information. This allows BSWLoc to achieve satisfactory accuracy with only one communication link, significantly reducing deployment consumption. In addition, a beyond-sharing-weights (BSW) method for domain adaptation is developed in BSWCLoc to address the problem of changing CSI in dynamic environments, which results in reduced localization performance. The BSW method proposes a dual-flow structure, where one flow runs in the source domain and the other in the target domain, with correlated but not shared weights in the adaptation layer. BSWCLoc greatly exceeds the state-of-the-art in terms of positioning accuracy and robustness, according to an extensive study in the dynamic indoor environment over 6 days.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"21 6\",\"pages\":\"6140-6152\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10697108/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10697108/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Novel Adaptive Device-Free Passive Indoor Fingerprinting Localization Under Dynamic Environment
In recent years, indoor localization has attracted a lot of interest and has become one of the key topics of Internet of Things (IoT) research, presenting a wide range of application scenarios. With the advantages of ubiquitous universal Wi-Fi platforms and the “unconscious collaborative sensing” in the monitored target, Channel State Information (CSI)-based device-free passive indoor fingerprinting localization has become a popular research topic. However, most existing studies have encountered the difficult issues of high deployment labor costs and degradation of localization accuracy due to fingerprint variations in real-world dynamic environments. In this paper, we propose BSWCLoc, a device-free passive fingerprint localization scheme based on the beyond-sharing-weights approach. BSWCLoc uses the calibrated CSI phases, which are more sensitive to the target location, as localization features and performs feature processing from a two-dimensional perspective to ultimately obtain rich fingerprint information. This allows BSWLoc to achieve satisfactory accuracy with only one communication link, significantly reducing deployment consumption. In addition, a beyond-sharing-weights (BSW) method for domain adaptation is developed in BSWCLoc to address the problem of changing CSI in dynamic environments, which results in reduced localization performance. The BSW method proposes a dual-flow structure, where one flow runs in the source domain and the other in the target domain, with correlated but not shared weights in the adaptation layer. BSWCLoc greatly exceeds the state-of-the-art in terms of positioning accuracy and robustness, according to an extensive study in the dynamic indoor environment over 6 days.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.