{"title":"棕榈和酯化棕榈油增强棕色脂肪增白有助于C57BL/6J小鼠代谢功能障碍。","authors":"Thamara Cherem Peixoto, Fernanda Torres Quitete, Ananda Vitoria Silva Teixeira, Bruna Cadete Martins, Ricardo de Andrade Soares, Geórgia Correa Atella, Iala Milene Bertasso, Patrícia Cristina Lisboa, Angela Castro Resende, Daniela de Barros Mucci, Vanessa Souza-Mello, Fabiane Ferreira Martins, Julio Beltrame Daleprane","doi":"10.1016/j.nutres.2024.11.009","DOIUrl":null,"url":null,"abstract":"<p><p>Palm oil is widely used in the food industry owing to its high stability and versatility. The interesterified version has been used as an alternative to oils rich in trans fatty acids. However, the health effects of these vegetable oils are not yet fully understood. We hypothesized that the consumption of palm oil (noninteresterified and interesterified), even without excessive amounts of energy and lipids in the diet, could lead to morphofunctional changes in brown adipose tissue (BAT). To this end, male C57BL/6J mice were divided into 3 dietary groups (n = 10 each): soybean oil (SO), palm oil (PO), and interesterified palm oil (IPO) for 10 weeks. The PO and IPO groups had significant increases in the visceral fat mass and interscapular BAT (iBAT) lipid content. In iBAT, the PO and IPO groups showed lower mRNA expression of Ucp1, Adrb3, and Pgc1a, while the PO also showed lower mRNA levels of Ppara and Ampk, and the IPO showed lower Prdm16 expression. Moreover, PO had higher Il6 expression and lower catalase activity, while the IPO showed an upregulated Tnfa expression and lower catalase activity, but higher antioxidant activity of the glutathione peroxidase (GPx) enzyme. The consumption of PO and IPO had negative effects on weight and body fat, including the impairment of iBAT function. Our findings give rise to apprehensions regarding the safety and consequences of consuming PO and IPO for energy metabolism.</p>","PeriodicalId":19245,"journal":{"name":"Nutrition Research","volume":"133 ","pages":"94-107"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Palm and interesterified palm oil-enhanced brown fat whitening contributes to metabolic dysfunction in C57BL/6J mice.\",\"authors\":\"Thamara Cherem Peixoto, Fernanda Torres Quitete, Ananda Vitoria Silva Teixeira, Bruna Cadete Martins, Ricardo de Andrade Soares, Geórgia Correa Atella, Iala Milene Bertasso, Patrícia Cristina Lisboa, Angela Castro Resende, Daniela de Barros Mucci, Vanessa Souza-Mello, Fabiane Ferreira Martins, Julio Beltrame Daleprane\",\"doi\":\"10.1016/j.nutres.2024.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Palm oil is widely used in the food industry owing to its high stability and versatility. The interesterified version has been used as an alternative to oils rich in trans fatty acids. However, the health effects of these vegetable oils are not yet fully understood. We hypothesized that the consumption of palm oil (noninteresterified and interesterified), even without excessive amounts of energy and lipids in the diet, could lead to morphofunctional changes in brown adipose tissue (BAT). To this end, male C57BL/6J mice were divided into 3 dietary groups (n = 10 each): soybean oil (SO), palm oil (PO), and interesterified palm oil (IPO) for 10 weeks. The PO and IPO groups had significant increases in the visceral fat mass and interscapular BAT (iBAT) lipid content. In iBAT, the PO and IPO groups showed lower mRNA expression of Ucp1, Adrb3, and Pgc1a, while the PO also showed lower mRNA levels of Ppara and Ampk, and the IPO showed lower Prdm16 expression. Moreover, PO had higher Il6 expression and lower catalase activity, while the IPO showed an upregulated Tnfa expression and lower catalase activity, but higher antioxidant activity of the glutathione peroxidase (GPx) enzyme. The consumption of PO and IPO had negative effects on weight and body fat, including the impairment of iBAT function. Our findings give rise to apprehensions regarding the safety and consequences of consuming PO and IPO for energy metabolism.</p>\",\"PeriodicalId\":19245,\"journal\":{\"name\":\"Nutrition Research\",\"volume\":\"133 \",\"pages\":\"94-107\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nutres.2024.11.009\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.nutres.2024.11.009","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Palm and interesterified palm oil-enhanced brown fat whitening contributes to metabolic dysfunction in C57BL/6J mice.
Palm oil is widely used in the food industry owing to its high stability and versatility. The interesterified version has been used as an alternative to oils rich in trans fatty acids. However, the health effects of these vegetable oils are not yet fully understood. We hypothesized that the consumption of palm oil (noninteresterified and interesterified), even without excessive amounts of energy and lipids in the diet, could lead to morphofunctional changes in brown adipose tissue (BAT). To this end, male C57BL/6J mice were divided into 3 dietary groups (n = 10 each): soybean oil (SO), palm oil (PO), and interesterified palm oil (IPO) for 10 weeks. The PO and IPO groups had significant increases in the visceral fat mass and interscapular BAT (iBAT) lipid content. In iBAT, the PO and IPO groups showed lower mRNA expression of Ucp1, Adrb3, and Pgc1a, while the PO also showed lower mRNA levels of Ppara and Ampk, and the IPO showed lower Prdm16 expression. Moreover, PO had higher Il6 expression and lower catalase activity, while the IPO showed an upregulated Tnfa expression and lower catalase activity, but higher antioxidant activity of the glutathione peroxidase (GPx) enzyme. The consumption of PO and IPO had negative effects on weight and body fat, including the impairment of iBAT function. Our findings give rise to apprehensions regarding the safety and consequences of consuming PO and IPO for energy metabolism.
期刊介绍:
Nutrition Research publishes original research articles, communications, and reviews on basic and applied nutrition. The mission of Nutrition Research is to serve as the journal for global communication of nutrition and life sciences research on diet and health. The field of nutrition sciences includes, but is not limited to, the study of nutrients during growth, reproduction, aging, health, and disease.
Articles covering basic and applied research on all aspects of nutrition sciences are encouraged, including: nutritional biochemistry and metabolism; metabolomics, nutrient gene interactions; nutrient requirements for health; nutrition and disease; digestion and absorption; nutritional anthropology; epidemiology; the influence of socioeconomic and cultural factors on nutrition of the individual and the community; the impact of nutrient intake on disease response and behavior; the consequences of nutritional deficiency on growth and development, endocrine and nervous systems, and immunity; nutrition and gut microbiota; food intolerance and allergy; nutrient drug interactions; nutrition and aging; nutrition and cancer; obesity; diabetes; and intervention programs.