Zongmian Song , Miaoheng Yan , Shuo Zhang , Binwu Hu , Xiangcheng Qing , Zengwu Shao , Songfeng Chen , Xiao Lv , Hongjian Liu
{"title":"昼夜节律紊乱对椎间盘退化的影响:交感神经系统的中介作用","authors":"Zongmian Song , Miaoheng Yan , Shuo Zhang , Binwu Hu , Xiangcheng Qing , Zengwu Shao , Songfeng Chen , Xiao Lv , Hongjian Liu","doi":"10.1016/j.arr.2024.102633","DOIUrl":null,"url":null,"abstract":"<div><div>The circadian clock orchestrates a broad spectrum of physiological processes, crucially modulating human biology across an approximate 24-hour cycle. The circadian disturbances precipitated by modern lifestyle contribute to the occurrence of low back pain (LBP), mainly ascribed to intervertebral disc degeneration (IVDD). The intervertebral disc (IVD) exhibits rhythmic physiological behaviors, with fluctuations in osmotic pressure and hydration levels that synchronized with the diurnal cycle of activity and rest. Over recent decades, advanced molecular biology techniques have shed light on the association between circadian molecules and IVD homeostasis. The complex interplay between circadian rhythm disruption and IVDD is becoming increasingly evident, with the sympathetic nervous system (SNS) emerging as a potential mediator. Synchronized with circadian rhythm through suprachiasmatic nucleus, the SNS regulates diverse physiological functions and metabolic processes, profoundly influences the structural and functional integrity of the IVD. This review synthesizes the current understanding of circadian regulation and sympathetic innervation of the IVD, highlighting advancements in the comprehension of their interactions. We elucidate the impact of circadian system on the physiological functions of IVD through the SNS, advocating for the adoption of chronotherapy as a brand-new and effective strategy to ameliorate IVDD and alleviate LBP.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"104 ","pages":"Article 102633"},"PeriodicalIF":12.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of circadian disruption on intervertebral disc degeneration: The mediating role of sympathetic nervous system\",\"authors\":\"Zongmian Song , Miaoheng Yan , Shuo Zhang , Binwu Hu , Xiangcheng Qing , Zengwu Shao , Songfeng Chen , Xiao Lv , Hongjian Liu\",\"doi\":\"10.1016/j.arr.2024.102633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The circadian clock orchestrates a broad spectrum of physiological processes, crucially modulating human biology across an approximate 24-hour cycle. The circadian disturbances precipitated by modern lifestyle contribute to the occurrence of low back pain (LBP), mainly ascribed to intervertebral disc degeneration (IVDD). The intervertebral disc (IVD) exhibits rhythmic physiological behaviors, with fluctuations in osmotic pressure and hydration levels that synchronized with the diurnal cycle of activity and rest. Over recent decades, advanced molecular biology techniques have shed light on the association between circadian molecules and IVD homeostasis. The complex interplay between circadian rhythm disruption and IVDD is becoming increasingly evident, with the sympathetic nervous system (SNS) emerging as a potential mediator. Synchronized with circadian rhythm through suprachiasmatic nucleus, the SNS regulates diverse physiological functions and metabolic processes, profoundly influences the structural and functional integrity of the IVD. This review synthesizes the current understanding of circadian regulation and sympathetic innervation of the IVD, highlighting advancements in the comprehension of their interactions. We elucidate the impact of circadian system on the physiological functions of IVD through the SNS, advocating for the adoption of chronotherapy as a brand-new and effective strategy to ameliorate IVDD and alleviate LBP.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"104 \",\"pages\":\"Article 102633\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568163724004513\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724004513","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Implications of circadian disruption on intervertebral disc degeneration: The mediating role of sympathetic nervous system
The circadian clock orchestrates a broad spectrum of physiological processes, crucially modulating human biology across an approximate 24-hour cycle. The circadian disturbances precipitated by modern lifestyle contribute to the occurrence of low back pain (LBP), mainly ascribed to intervertebral disc degeneration (IVDD). The intervertebral disc (IVD) exhibits rhythmic physiological behaviors, with fluctuations in osmotic pressure and hydration levels that synchronized with the diurnal cycle of activity and rest. Over recent decades, advanced molecular biology techniques have shed light on the association between circadian molecules and IVD homeostasis. The complex interplay between circadian rhythm disruption and IVDD is becoming increasingly evident, with the sympathetic nervous system (SNS) emerging as a potential mediator. Synchronized with circadian rhythm through suprachiasmatic nucleus, the SNS regulates diverse physiological functions and metabolic processes, profoundly influences the structural and functional integrity of the IVD. This review synthesizes the current understanding of circadian regulation and sympathetic innervation of the IVD, highlighting advancements in the comprehension of their interactions. We elucidate the impact of circadian system on the physiological functions of IVD through the SNS, advocating for the adoption of chronotherapy as a brand-new and effective strategy to ameliorate IVDD and alleviate LBP.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.